skip to main content

Title: Absence of Nanoparticle-Induced Drought Tolerance in Nutrient Sufficient Wheat Seedlings
Strategies to reduce crop losses due to drought are needed as climate variability affects agricultural productivity. Wheat (Triticum aestivum var. Juniper) growth in a nutrient-sufficient, solid growth matrix containing varied doses of CuO, ZnO, and SiO2 nanoparticles (NPs) was used to evaluate NP mitigation of drought stress. NP amendments were at fertilizer levels, with maxima of 30 Cu, 20 Zn, and 200 Si (mg metal/kg matrix). Seeds of this drought-tolerant cultivar were inoculated with Pseudomonas chlororaphis O6 (PcO6) to provide a protective root microbiome. An 8 day drought imposed on 14 day-old wheat seedlings decreased shoot and root mass, shoot water content, and the quantum yield of photosystem II when compared to watered plants. PcO6 root colonization was not impaired by drought or NPs. A dose-dependent increase in the Cu, Zn, and Si from the NPs was observed from analysis of the rhizosphere solution, and this process was not affected by drought. Consequently, fertilizer concentrations of the NPs did not further improve drought tolerance in wheat seedlings under the growth conditions of adequate mineral nutrition and the presence of a beneficial microbiome. These findings suggest that potential NP benefits in promoting plant drought tolerance occur only under certain environmental conditions.
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1705874
Publication Date:
NSF-PAR ID:
10288112
Journal Name:
Environmental Science & Technology
ISSN:
0013-936X
Sponsoring Org:
National Science Foundation
More Like this
  1. CuO nanoparticles (NPs) are explored as fungicides and fertilizers, and are increasingly likely to be applied to agricultural soils. Consequently, interactions of CuO NPs with soil pore water (SPW) components, plants, and microbes must be understood. These experiments examined whether dissolved natural organic matter (DNOM) from SPW, or root/bacterial exudates, changed wheat ( Triticum aestivum L. v. Deloris) responses to 100 mg kg −1 (Cu/sand) as CuO NPs. Seedlings were grown in sand with 3.34 mM Ca(NO 3 ) 2 or one of three SPWs, differing in DNOM concentration and composition. At 10 days post-germination, CuO NPs stunted roots by 59% in the 3.34 mM Ca(NO 3 ) 2 and 26–35% in the three SPWs compared to plants grown without NPs. Malate, citrate, gluconate, and 2′-deoxymugineic acid (DMA), were elevated 1.3 to 5-fold in the rhizosphere with CuO NPs present. Cu was bioavailable through metallo-organic complexes, including Cu–DMA and Cu–gluconate. Fulvic acid in SPWs mitigated CuO NP-induced wheat root shortening. Pseudomonas chlororaphis O6 eliminated malate and citrate in the rhizospheres, reduced rhizosphere dissolved Cu ∼18–66%, and reduced root Cu 39% across all SPWs while enhancing root stunting ∼17% more across all SPWs than non-inoculated wheat grown with CuO NPs. Thus,more »both SPW components and root microbial colonization influenced wheat responses to CuO NPs. These interactions are likely in agricultural soils with additional processes, such as ion sorption, to influence CuO NP phytotoxicity, highlighting the importance of considering not just the target plant, but soil properties and associated microbiomes when evaluating impacts of NPs in agricultural usage.« less
  2. Gadd, GM ; Sariaslani, S. (Ed.)
    Climate change, with its extreme temperature, weather and precipitation patterns, is a major global concern of dryland farmers, who currently meet the challenges of climate change agronomically and with growth of drought-tolerant crops. Plants themselves compensate for water stress by modifying aerial surfaces to control transpiration and altering root hydraulic conductance to increase water uptake. These responses are complemented by metabolic changes involving phytohormone network-mediated activation of stress response pathways, resulting in decreased photosynthetic activity and the accumulation of metabolites to maintain osmotic and redox homeostasis. Phylogenetically diverse microbial communities sustained by plants contribute to host drought tolerance by modulating phytohormone levels in the rhizosphere and producing water-sequestering biofilms. Drylands of the Inland Pacific Northwest, USA, illustrate the interdependence of dryland crops and their associated microbiota. Indigenous Pseudomonas spp. selected there by long-term wheat monoculture suppress root diseases via the production of antibiotics, with soil moisture a critical determinant of the bacterial distribution, dynamics and activity. Those pseudomonads producing phenazine antibiotics on wheat had more abundant rhizosphere biofilms and provided improved tolerance to drought, suggesting a role of the antibiotic in alleviation of drought stress. The transcriptome and metabolome studies suggest the importance of wheat root exudate-derived osmoprotectants for themore »adaptation of these pseudomonads to the rhizosphere lifestyle and support the idea that the exchange of metabolites between plant roots and microorganisms profoundly affects and shapes the belowground plant microbiome under water stress.« less
  3. Abstract Background and Aims

    The ability of wheat genotypes to save water by reducing their transpiration rate (TR) at times of the day with high vapour pressure deficit (VPD) has been linked to increasing yields in terminal drought environments. Further, recent evidence shows that reducing nocturnal transpiration (TRN) could amplify water saving. Previous research indicates that such traits involve a root-based hydraulic limitation, but the contribution of hormones, particularly auxin and abscisic acid (ABA), has not been explored to explain the shoot–root link. In this investigation, based on physiological, genetic and molecular evidence gathered on a mapping population, we hypothesized that root auxin accumulation regulates whole-plant water use during both times of the day.

    Methods

    Eight double-haploid lines were selected from a mapping population descending from two parents with contrasting water-saving strategies and root hydraulic properties. These spanned the entire range of slopes of TR responses to VPD and TRN encountered in the population. We examined daytime/night-time auxin and ABA contents in the roots and the leaves in relation to hydraulic traits that included whole-plant TR, plant hydraulic conductance (KPlant), slopes of TR responses to VPD and leaf-level anatomical traits.

    Key Results

    Root auxin levels were consistently genotype-dependent in this group irrespective ofmore »experiments and times of the day. Daytime root auxin concentrations were found to be strongly and negatively correlated with daytime TR, KPlant and the slope of TR response to VPD. Night-time root auxin levels significantly and negatively correlated with TRN. In addition, daytime and night-time leaf auxin and ABA concentrations did not correlate with any of the examined traits.

    Conclusions

    The above results indicate that accumulation of auxin in the root system reduces daytime and night-time water use and modulates plant hydraulic properties to enable the expression of water-saving traits that have been associated with enhanced yields under drought.

    « less
  4. Nanofertilizer application is becoming a sustainable alternative for plants micronutrients supply. Seed nutrient priming before seeding reduces non- target dispersion; although, applying nanofertilizer in correct concentration must be narrowly chosen to prevent germination and development issues. Here, we evaluated corn seedlings development and germination after seed priming with Mn3O4 nanoparticle (NP), Mn3O4 bulk and MnCl2. Sterile seeds were soaked for 8hours in priming solutions of 0, 20, 40, 80 and 160mg L1 for each Mn sources. The seeds vigor and germination were evaluated after 7 days on germination paper. Root, shoot and total lengths were measured as well as root, shoot and total dry biomass. Compared to the control, the Mn3O4 NP and Mn3O4 bulk promoted beneficial effects. Mn3O4 NP seed-priming exhibited a concentration dependent profile in improving seedling growth, with greatest benefit around 20mg L1, pro- viding higher germination, vigor, dry biomass and length than control and the other source tested. Particle size plays an important role in the reactiv- ity of Mn3O4 NP. On the other hand, seeds primed with soluble source did not differ from the control. These findings support NP-seed priming as an alternative to delivery micronutrients.
  5. Basin big sagebrush (Artemisia tridentata subsp. tridentata) is a keystone species of the sagebrush steppe, a widespread ecosystem of western North America threatened by climate change. The study’s goal was to develop an in vitro method of propagation for this taxon to support genome sequencing and genotype-by-environment research on drought tolerance. Such research may ultimately facilitate the reintroduction of big sagebrush in degraded habitats. Seedlings were generated from two diploid mother plants (2n = 2x = 18) collected in environments with contrasting precipitation regimes. The effects of IBA and NAA on rooting of shoot tips were tested on 45 individuals and 15 shoot tips per individual. Growth regulator and individual-seedling effects on percent rooting and roots per shoot tip were evaluated using statistical and clustering analyses. Furthermore, rooted shoot tips were transferred into new media to ascertain their continued growth in vitro. The results suggest that A. tridentata is an outbred species, as shown by individuals’ effect on rooting and growth. IBA addition was the most effective method for promoting adventitious rooting, especially in top-performing individuals. These individuals also have high survival and growth rates upon transferring to new media, making them suitable candidates for generating biomass for genome sequencingmore »and producing clones for genotype-by-environment research.« less