In this work, we present methods for using human-robot dialog to improve language understanding for a mobile robot agent. The agent parses natural language to underlying semantic meanings and uses robotic sensors to create multi-modal models of perceptual concepts like red and heavy. The agent can be used for showing navigation routes, delivering objects to people, and relocating objects from one location to another. We use dialog clari_cation questions both to understand commands and to generate additional parsing training data. The agent employs opportunistic active learning to select questions about how words relate to objects, improving its understanding of perceptual concepts. We evaluated this agent on Amazon Mechanical Turk. After training on data induced from conversations, the agent reduced the number of dialog questions it asked while receiving higher usability ratings. Additionally, we demonstrated the agent on a robotic platform, where it learned new perceptual concepts on the y while completing a real-world task.
more »
« less
Dialog Policy Learning for Joint Clarification and Active Learning Queries
Intelligent systems need to be able to recover from mistakes, resolve uncertainty, and adapt to novel concepts not seen during training. Dialog interaction can enable this by the use of clarifications for correction and resolving uncertainty, and active learning queries to learn new concepts encountered during operation. Prior work on dialog systems has either focused on exclusively learning how to perform clarification/ information seeking, or to perform active learning. In this work, we train a hierarchical dialog policy to jointly perform both clarification and active learning in the context of an interactive language-based image retrieval task motivated by an on-line shopping application, and demonstrate that jointly learning dialog policies for clarification and active learning is more effective than the use of static dialog policies for one or both of these functions.
more »
« less
- Award ID(s):
- 1925082
- PAR ID:
- 10233786
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- ISSN:
- 2159-5399
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents an active learning strategy for robotic systems that takes into account task information, enables fast learning, and allows control to be readily synthesized by taking advantage of the Koopman operator representation. We first motivate the use of representing nonlinear systems as linear Koopman operator systems by illustrating the improved model-based control performance with an actuated Van der Pol system. Information-theoretic methods are then applied to the Koopman operator formulation of dynamical systems where we derive a controller for active learning of robot dynamics. The active learning controller is shown to increase the rate of information about the Koopman operator. In addition, our active learning controller can readily incorporate policies built on the Koopman dynamics, enabling the benefits of fast active learning and improved control. Results using a quadcopter illustrate single-execution active learning and stabilization capabilities during free-fall. The results for active learning are extended for automating Koopman observables and we implement our method on real robotic systems.more » « less
-
Learning to perform a perceptual decision task is generally achieved through sessions of effortful practice with feedback. Here, we investigated how passive exposure to task-relevant stimuli, which is relatively effortless and does not require feedback, influences active learning. First, we trained mice in a sound-categorization task with various schedules combining passive exposure and active training. Mice that received passive exposure exhibited faster learning, regardless of whether this exposure occurred entirely before active training or was interleaved between active sessions. We next trained neural-network models with different architectures and learning rules to perform the task. Networks that use the statistical properties of stimuli to enhance separability of the data via unsupervised learning during passive exposure provided the best account of the behavioral observations. We further found that, during interleaved schedules, there is an increased alignment between weight updates from passive exposure and active training, such that a few interleaved sessions can be as effective as schedules with long periods of passive exposure before active training, consistent with our behavioral observations. These results provide key insights for the design of efficient training schedules that combine active learning and passive exposure in both natural and artificial systems.more » « less
-
Natural language understanding for robotics can require substantial domain- and platform-specific engineering. For example, for mobile robots to pick-and-place objects in an environment to satisfy human commands, we can specify the language humans use to issue such commands, and connect concept words like red can to physical object properties. One way to alleviate this engineering for a new domain is to enable robots in human environments to adapt dynamically -- continually learning new language constructions and perceptual concepts. In this work, we present an end-to-end pipeline for translating natural language commands to discrete robot actions, and use clarification dialogs to jointly improve language parsing and concept grounding. We train and evaluate this agent in a virtual setting on Amazon Mechanical Turk, and we transfer the learned agent to a physical robot platform to demonstrate it in the real world.more » « less
-
Natural language understanding and dia- log management are two integral compo- nents of interactive dialog systems. Pre- vious research has used machine learning techniques to individually optimize these components, with different forms of direct and indirect supervision. We present an approach to integrate the learning of both a dialog strategy using reinforcement learn- ing, and a semantic parser for robust nat- ural language understanding, using only natural dialog interaction for supervision. Experimental results on a simulated task of robot instruction demonstrate that joint learning of both components improves di- alog performance over learning either of these components alone.more » « less