skip to main content


Title: Single Nozzle Electrospinning Synthesized MoO 2 @C Core Shell Nanofibers with High Capacity and Long‐Term Stability for Lithium‐Ion Storage

MoO2@C core shell nanofibers are synthesized via a simple electrospinning method with a single nozzle. The formation mechanism of MoO2@C core shell nanofibers is investigated in detail and it is discovered that the phase‐segregation phenomenon may be the main driving force of thermodynamics to form MoO2@C core shell nanofibers, and the high temperature as the dynamic factor can accelerate the formation of these core shell nanofibers. The carbon shell of the MoO2@C core shell nanofibers acts as both conductive bond to increase electrical conductivity and structural skeleton to maintain the integrity of MoO2during Li+insertion/extraction to achieve both high specific capacity and good cyclic stability. So as an anode for lithium‐ion batteries, the MoO2@C core shell nanofiber electrode exhibits high specific capacity and extraordinary lifetime even at a large current density. Their reversible capacities are 665 mA h g−1in the 600th cycle at 0.5 A g−1. Even at a high current density of 1 A g−1, a capacity of 537 mA h g−1is obtained after 600 cycles. The present work may provide a facile and broadly applicable way for the fabrication and utilization of metal oxide/carbon core shell composites in fields of batteries, catalysts, and fuel cells.

 
more » « less
NSF-PAR ID:
10234156
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
4
Issue:
3
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It is essential but still challenging to design and construct inexpensive, highly active bifunctional oxygen electrocatalysts for the development of high power density zinc–air batteries (ZABs). Herein, a CoFe‐S@3D‐S‐NCNT electrocatalyst with a 3D hierarchical structure of carbon nanotubes growing on leaf‐like carbon microplates is designed and prepared through chemical vapour deposition pyrolysis of CoFe‐MOF and subsequent hydrothermal sulfurization. Its 3D hierarchical structure shows excellent hydrophobicity, which facilitates the diffusion of oxygen and thus accelerates the oxygen reduction reaction (ORR) kinetic process. Alloying and sulfurization strategies obviously enrich the catalytic species in the catalyst, including cobalt or cobalt ferroalloy sulfides, their heterojunction, core–shell structure, and S, N‐doped carbon, which simultaneously improve the ORR/OER catalytic activity with a small potential gap (ΔE = 0.71 V). Benefiting from these characteristics, the corresponding liquid ZABs show high peak power density (223 mW cm−2), superior specific capacity (815 mA h gZn−1), and excellent stability at 5 mA cm−2for ≈900 h. The quasi‐solid‐state ZABs also exhibit a very high peak power density of 490 mW cm−2and an excellent voltage round‐trip efficiency of more than 64%. This work highlights that simultaneous composition optimization and microstructure design of catalysts can effectively improve the performance of ZABs.

     
    more » « less
  2. Molybdenum disulfide (MoS 2 ) may be a promising alternative for lithium ion batteries (LIBs) because it offers a unique layered crystal structure with a large and tunable distance between layers. This enables the anticipated excellent rate and cycling stability because they can promote the reversible lithium ion intercalation and de-intercalation without huge volume change which consequently prevents the pulverization of active materials during repeated charge and discharge processes. Herein, we prepared hierarchical MoS 2 –carbon (MoS 2 –C) microspheres via a continuous and scalable ultrasonic nebulization assisted route. The structure, composition, and electrochemical properties are investigated in detail. The MoS 2 –C microspheres consist of few-layer MoS 2 nanosheets bridged by carbon, which separates the exfoliated MoS 2 layers and prevents their aggregation and restacking, thus leading to improved kinetic, enhanced conductivity and structural integrity. The novel architecture offers additional merits such as overall large size and high packing density, which promotes their practical applications. The MoS 2 –C microspheres have been demonstrated with excellent electrochemical performances in terms of low resistance, high capacity even at large current density, stable cycling performance, etc. The electrodes exhibited 800 mA h g −1 at 1000 mA g −1 over 170 cycles. At a higher current density of 3200 mA g −1 , a capacity of 730 mA h g −1 can be also maintained. The MoS 2 –C microspheres are practically applicable not only because of the continuous and large scale synthesis via the current strategy, but also the possess a robust and integrated architecture which ensures the excellent electrochemical properties. 
    more » « less
  3. Li2S is one of the most promising cathode materials for Li‐ion batteries because of its high theoretical capacity and compatibility with Li‐metal‐free anode materials. However, the poor conductivity and electrochemical reactivity lead to low initial capacity and severe capacity decay. In this communication, a nitrogen and phosphorus codoped carbon (N,P–C) framework derived from phytic acid doped polyaniline hydrogel is designed to support Li2S nanoparticles as a binder‐free cathode for Li–S battery. The porous 3D architecture of N and P codoped carbon provides continuous electron pathways and hierarchically porous channels for Li ion transport. Phosphorus doping can also suppress the shuttle effect through strong interaction between sulfur and the carbon framework, resulting in high Coulombic efficiency. Meanwhile, P doping in the carbon framework plays an important role in improving the reaction kinetics, as it may help catalyze the redox reactions of sulfur species to reduce electrochemical polarization, and enhance the ionic conductivity of Li2S. As a result, the Li2S/N,P–C composite electrode delivers a stable capacity of 700 mA h g−1with average Coulombic efficiency of 99.4% over 100 cycles at 0.1C and an areal capacity as high as 2 mA h cm−2at 0.5C.

     
    more » « less
  4. This review provides a comprehensive overview on the development of highly active and durable platinum catalysts with ultra-low Pt loadings for polymer electrolyte membrane fuel cells (PEMFCs) through a combined mathematical modeling and experimental work. First, simulation techniques were applied to evaluate the validity of the Tafel approximation for the calculation of the mass activity (MA) and specific activity (SA). A one-dimensional agglomeration model was developed and solved to understand the effects of exchange current density, porosity, agglomerate size, Nafion®film thickness, and Pt loading on the MA and SA. High porosity (> 60%) and agglomerations at high Pt loadings cause the loss of the Tafel approximation and consequently the decrease in MA and SA. A new structure parameter was introduced to estimate the real porous structure using the fractal theory. The volumetric catalyst density was corrected by the fractal dimension (measured by Hg porosimetry), which gave a good agreement with the experimental values. The loading-dependent Tafel equation was then derived, which contains both the utilization and the non-linear scaling factor. Second, activated carbon composite support (ACCS) with optimized surface area, porosity, pore size, and pore size distribution was developed. The hydrophilic/hydrophobic ratio, structural properties (amorphous/crystalline ratio), and the number of active sites were optimized through metal-catalyzed pyrolysis. Stability of ACCS and Pt/ACCS were evaluated using an accelerated stress test (AST). The results indicated that Pt/ACCS showed no significant loss of MA and power density after 5,000 cycles at 1.0–1.5 V, while the commercial Pt/C catalysts showed drastic losses of MA and power density. Finally, monolayers of compressed Pt (core–shell-type Pt3Co1) catalysts were structured by diffusing Co atoms (previously embedded in ACCS) into Pt. Compressive Pt lattice (Pt*) catalysts were synthesized through an annealing procedure developed at the University of South Carolina (USC). The Pt*/ACCS catalyst showed high initial power density (rated) of 0.174 gPtkW−1and high stability (24 mV loss) at 0.8 A cm−2after 30,000 cycles (0.6–1.0 V). The outstanding performance of Pt*/ACCS is due to the synergistic effect of ACCS and compressive Pt*lattice.

     
    more » « less
  5. Abstract

    Lithium‐air batteries based on CO2reactant (Li–CO2) have recently been of interest because it has been found that reversible Li/CO2electrochemistry is feasible. In this study, a new medium‐entropy cathode catalyst, (NbTa)0.5BiS3, that enables the reversible electrochemistry to operate at high rates is presented. This medium entropy cathode catalyst is combined with an ionic liquid‐based electrolyte blend to give a Li–CO2battery that operates at high current density of 5000 mA g−1and capacity of 5000 mAh g−1for up to 125 cycles, far exceeding reported values in the literature for this type of battery. The higher rate performance is believed to be due to the greater stability of the multi‐element (NbTa)0.5BiS3catalyst because of its higher entropy compared to previously used catalysts with a smaller number of elements with lower entropies. Evidence for this comes from computational studies giving very low surface energies (high surface stability) for (NbTa)0.5BiS3and transmission electron microscopystudies showing the structure being retained after cycling. In addition, the calculations indicate that Nb‐terminated surface promotes Li–CO2electrochemistry resulting in Li2CO3and carbon formation, consistent with the products found in the cell. These results open new direction to design and develop high‐performance Li–CO2batteries.

     
    more » « less