Abstract Using extensive numerical simulation of the Navier–Stokes equations, we study the transition from the Darcy’s law for slow flow of fluids through a disordered porous medium to the nonlinear flow regime in which the effect of inertia cannot be neglected. The porous medium is represented by two-dimensional slices of a three-dimensional image of a sandstone. We study the problem over wide ranges of porosity and the Reynolds number, as well as two types of boundary conditions, and compute essential features of fluid flow, namely, the strength of the vorticity, the effective permeability of the pore space, the frictional drag, and the relationship between the macroscopic pressure gradient$${\varvec{\nabla }}P$$ and the fluid velocityv. The results indicate that when the Reynolds number Re is low enough that the Darcy’s law holds, the magnitude$$\omega _z$$ of the vorticity is nearly zero. As Re increases, however, so also does$$\omega _z$$ , and its rise from nearly zero begins at the same Re at which the Darcy’s law breaks down. We also show that a nonlinear relation between the macroscopic pressure gradient and the fluid velocityv, given by,$$-{\varvec{\nabla }}P=(\mu /K_e)\textbf{v}+\beta _n\rho |\textbf{v}|^2\textbf{v}$$ , provides accurate representation of the numerical data, where$$\mu$$ and$$\rho$$ are the fluid’s viscosity and density,$$K_e$$ is the effective Darcy permeability in the linear regime, and$$\beta _n$$ is a generalized nonlinear resistance. Theoretical justification for the relation is presented, and its predictions are also compared with those of the Forchheimer’s equation.
more »
« less
Influence of Wetting on Viscous Fingering Via 2D Lattice Boltzmann Simulations
Abstract We present simulations of two-phase flow using the Rothman and Keller colour gradient Lattice Boltzmann method to study viscous fingering when a “red fluid” invades a porous model initially filled with a “blue” fluid with different viscosity. We conducted eleven suites of 81 numerical experiments totalling 891 simulations, where each suite had a different random realization of the porous model and spanned viscosity ratios in the range$$M\in [0.01,100]$$ and wetting angles in the range$$\theta _w\in [180^\circ ,0^\circ ]$$ to allow us to study the effect of these parameters on the fluid-displacement morphology and saturation at breakthrough (sweep). Although sweep often increased with wettability, this was not always so and the sweep phase space landscape, defined as the difference in saturation at a given wetting angle relative to saturation for the non-wetting case, had hills, ridges and valleys. At low viscosity ratios, flow at breakthrough is localized through narrow fingers that span the model. After breakthrough, the flow field continues to evolve and the saturation continues to increase albeit at a reduced rate, and eventually exceeds 90% for both non-wetting and wetting cases. The existence of a complicated sweep phase space at breakthrough, and continued post-breakthrough evolution suggests the hydrodynamics and sweep is a complicated function of wetting angle, viscosity ratio and time, which has major potential implications to Enhanced Oil Recovery by water flooding, and hence, on estimates of global oil reserves. Validation of these results via experiments is required to ensure they translate to field studies.
more »
« less
- Award ID(s):
- 1918126
- PAR ID:
- 10234482
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Transport in Porous Media
- Volume:
- 138
- Issue:
- 3
- ISSN:
- 0169-3913
- Format(s):
- Medium: X Size: p. 511-538
- Size(s):
- p. 511-538
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers$${\boldsymbol{(}}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{7}}}{\boldsymbol{\lesssim }}{\bf{Re}}{\boldsymbol{\lesssim }}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{3}}}{\boldsymbol{)}}$$ . Fluid drag is conceptualized via a critical Reynolds number:$${\bf{Re}}{\boldsymbol{=}}\frac{{{\bf{v}}}_{{\bf{0}}}{{\bf{x}}}_{{\bf{0}}}}{{\boldsymbol{\nu }}}$$ , wherev0corresponds to the maximum wetting speed on a flat, dry surface andx0is the extension length of the liquid meniscus that drives the bulk fluid toward the adsorbed thin-film region. The model is validated with wicking experiments on different hemiwicking surfaces in conjunction withv0andx0measurements using Water$${\boldsymbol{(}}{{\bf{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{2}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{25}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\bf{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{28}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$ , viscous FC-70$${\boldsymbol{(}}{{\boldsymbol{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{0.3}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{18.6}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\boldsymbol{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{38.6}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$ and lower viscosity Ethanol$${\boldsymbol{(}}{{\boldsymbol{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{1.2}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{11.8}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\bf{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{33.3}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$ .more » « less
-
Abstract The elliptic flow$$(v_2)$$ of$${\textrm{D}}^{0}$$ mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0})$$ was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$$\sqrt{s_{\textrm{NN}}} = 5.02$$ TeV with the ALICE detector at the LHC. The$${\textrm{D}}^{0}$$ mesons were reconstructed at midrapidity$$(|y|<0.8)$$ from their hadronic decay$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ , in the transverse momentum interval$$2< p_{\textrm{T}} < 12$$ GeV/c. The result indicates a positive$$v_2$$ for non-prompt$${{\textrm{D}}^{0}}$$ mesons with a significance of 2.7$$\sigma $$ . The non-prompt$${{\textrm{D}}^{0}}$$ -meson$$v_2$$ is lower than that of prompt non-strange D mesons with 3.2$$\sigma $$ significance in$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ , and compatible with the$$v_2$$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.more » « less
-
A<sc>bstract</sc> A measurement of theCP-violating parameters in$$ {B}_s^0\boldsymbol{\to}{D}_s^{\mp }{K}^{\pm} $$ decays is reported, based on the analysis of proton-proton collision data collected by the LHCb experiment corresponding to an integrated luminosity of 6 fb−1at a centre-of-mass energy of 13 TeV. The measured parameters are obtained with a decay-time dependent analysis yieldingCf= 0.791 ± 0.061 ± 0.022,$$ {A}_f^{\Delta \Gamma} $$ = −0.051 ± 0.134 ± 0.058,$$ {A}_{\overline{f}}^{\Delta \Gamma} $$ = −0.303 ± 0.125 ± 0.055,Sf= −0.571 ± 0.084 ± 0.023 and$$ {S}_{\overline{f}} $$ = −0.503 ± 0.084 ± 0.025, where the first uncertainty is statistical and the second systematic. This corresponds to CP violation in the interference between mixing and decay of about 8.6σ. Together with the value of the$$ {B}_s^0 $$ mixing phase −2βs, these parameters are used to obtain a measurement of the CKM angleγequal to (74 ± 12)° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This result is combined with the previous LHCb measurement in this channel using 3 fb−1resulting in a determination of$$ \gamma ={\left({81}_{-11}^{+12}\right)}^{\circ } $$ .more » « less
-
AbstractPrevious theoretical and simulation results indicate that anisotropic porous materials have the potential to reduce turbulent skin friction in wall-bounded flows. This study experimentally investigates the influence of anisotropy on the drag response of porous substrates. A family of anisotropic periodic lattices was manufactured using 3D printing. Rod spacing in different directions was varied systematically to achieve different ratios of streamwise, wall-normal, and spanwise bulk permeabilities ($$\kappa _{xx}$$ ,$$\kappa _{yy}$$ , and$$\kappa _{zz}$$ ). The 3D printed materials were flush-mounted in a benchtop water channel. Pressure drop measurements were taken in the fully developed region of the flow to systematically characterize drag for materials with anisotropy ratios$$\frac{\kappa _{xx}}{\kappa _{yy}} \in [0.035,28.6]$$ . Results show that all materials lead to an increase in drag compared to the reference smooth wall case over the range of bulk Reynolds numbers tested ($$\hbox {Re}_b \in [500,4000]$$ ). However, the relative increase in drag is lower for streamwise-preferential materials. We estimate that the wall-normal permeability for all tested cases exceeded the threshold identified in previous literature ($$\sqrt{\kappa _{yy}}^+> 0.4$$ ) for the emergence of energetic spanwise rollers similar to Kelvin–Helmholtz vortices, which can increase drag. The results also indicate that porous walls exhibit a departure from laminar behavior at different values for bulk Reynolds numbers depending on the geometry. Graphical abstractmore » « less
An official website of the United States government
