skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Transition from Darcy to Nonlinear Flow in Heterogeneous Porous Media: I—Single-Phase Flow
Abstract Using extensive numerical simulation of the Navier–Stokes equations, we study the transition from the Darcy’s law for slow flow of fluids through a disordered porous medium to the nonlinear flow regime in which the effect of inertia cannot be neglected. The porous medium is represented by two-dimensional slices of a three-dimensional image of a sandstone. We study the problem over wide ranges of porosity and the Reynolds number, as well as two types of boundary conditions, and compute essential features of fluid flow, namely, the strength of the vorticity, the effective permeability of the pore space, the frictional drag, and the relationship between the macroscopic pressure gradient$${\varvec{\nabla }}P$$ P and the fluid velocityv. The results indicate that when the Reynolds number Re is low enough that the Darcy’s law holds, the magnitude$$\omega _z$$ ω z of the vorticity is nearly zero. As Re increases, however, so also does$$\omega _z$$ ω z , and its rise from nearly zero begins at the same Re at which the Darcy’s law breaks down. We also show that a nonlinear relation between the macroscopic pressure gradient and the fluid velocityv, given by,$$-{\varvec{\nabla }}P=(\mu /K_e)\textbf{v}+\beta _n\rho |\textbf{v}|^2\textbf{v}$$ - P = ( μ / K e ) v + β n ρ | v | 2 v , provides accurate representation of the numerical data, where$$\mu$$ μ and$$\rho$$ ρ are the fluid’s viscosity and density,$$K_e$$ K e is the effective Darcy permeability in the linear regime, and$$\beta _n$$ β n is a generalized nonlinear resistance. Theoretical justification for the relation is presented, and its predictions are also compared with those of the Forchheimer’s equation.  more » « less
Award ID(s):
2000968
PAR ID:
10495460
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Transport in Porous Media
Volume:
151
Issue:
4
ISSN:
0169-3913
Format(s):
Medium: X Size: p. 795-812
Size(s):
p. 795-812
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For polyhedral constrained optimization problems and a feasible point$$\textbf{x}$$ x , it is shown that the projection of the negative gradient on the tangent cone, denoted$$\nabla _\varOmega f(\textbf{x})$$ Ω f ( x ) , has an orthogonal decomposition of the form$$\varvec{\beta }(\textbf{x}) + \varvec{\varphi }(\textbf{x})$$ β ( x ) + φ ( x ) . At a stationary point,$$\nabla _\varOmega f(\textbf{x}) = \textbf{0}$$ Ω f ( x ) = 0 so$$\Vert \nabla _\varOmega f(\textbf{x})\Vert $$ Ω f ( x ) reflects the distance to a stationary point. Away from a stationary point,$$\Vert \varvec{\beta }(\textbf{x})\Vert $$ β ( x ) and$$\Vert \varvec{\varphi }(\textbf{x})\Vert $$ φ ( x ) measure different aspects of optimality since$$\varvec{\beta }(\textbf{x})$$ β ( x ) only vanishes when the KKT multipliers at$$\textbf{x}$$ x have the correct sign, while$$\varvec{\varphi }(\textbf{x})$$ φ ( x ) only vanishes when$$\textbf{x}$$ x is a stationary point in the active manifold. As an application of the theory, an active set algorithm is developed for convex quadratic programs which adapts the flow of the algorithm based on a comparison between$$\Vert \varvec{\beta }(\textbf{x})\Vert $$ β ( x ) and$$\Vert \varvec{\varphi }(\textbf{x})\Vert $$ φ ( x )
    more » « less
  2. Abstract Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers$${\boldsymbol{(}}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{7}}}{\boldsymbol{\lesssim }}{\bf{Re}}{\boldsymbol{\lesssim }}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{3}}}{\boldsymbol{)}}$$ ( 10 7 Re 10 3 ) . Fluid drag is conceptualized via a critical Reynolds number:$${\bf{Re}}{\boldsymbol{=}}\frac{{{\bf{v}}}_{{\bf{0}}}{{\bf{x}}}_{{\bf{0}}}}{{\boldsymbol{\nu }}}$$ Re = v 0 x 0 ν , wherev0corresponds to the maximum wetting speed on a flat, dry surface andx0is the extension length of the liquid meniscus that drives the bulk fluid toward the adsorbed thin-film region. The model is validated with wicking experiments on different hemiwicking surfaces in conjunction withv0andx0measurements using Water$${\boldsymbol{(}}{{\bf{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{2}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{25}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\bf{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{28}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$ ( v 0 2 m / s , 25 µ m x 0 28 µ m ) , viscous FC-70$${\boldsymbol{(}}{{\boldsymbol{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{0.3}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{18.6}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\boldsymbol{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{38.6}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$ ( v 0 0.3 m / s , 18.6 µ m x 0 38.6 µ m ) and lower viscosity Ethanol$${\boldsymbol{(}}{{\boldsymbol{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{1.2}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{11.8}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\bf{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{33.3}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$ ( v 0 1.2 m / s , 11.8 µ m x 0 33.3 µ m )
    more » « less
  3. Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ ρ 0 meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$ μ + and$$ \mu ^{-}$$ μ - beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$ c 2 $$< W<$$ < W < 17.0 GeV/$$c^2$$ c 2 , 1.0 (GeV/c)$$^2$$ 2 $$< Q^2<$$ < Q 2 < 10.0 (GeV/c)$$^2$$ 2 and 0.01 (GeV/c)$$^2$$ 2 $$< p_{\textrm{T}}^2<$$ < p T 2 < 0.5 (GeV/c)$$^2$$ 2 . Here,Wdenotes the mass of the final hadronic system,$$Q^2$$ Q 2 the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$ p T the transverse momentum of the$$\rho ^0$$ ρ 0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$ γ T V L ) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ ρ 0 production. 
    more » « less
  4. Abstract We consider thed-dimensional MagnetoHydroDynamics (MHD) system defined on a sufficiently smooth bounded domain,$$d = 2,3$$ d = 2 , 3 with homogeneous boundary conditions, and subject to external sources assumed to cause instability. The initial conditions for both fluid and magnetic equations are taken of low regularity. We then seek to uniformly stabilize such MHD system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of explicitly constructed, static, feedback controls, which are localized on an arbitrarily small interior subdomain. In additional, they will be minimal in number. The resulting space of well-posedness and stabilization is a suitable product space$$\displaystyle \widetilde{\textbf{B}}^{2- ^{2}\!/_{p}}_{q,p}(\Omega )\times \widetilde{\textbf{B}}^{2- ^{2}\!/_{p}}_{q,p}(\Omega ), \, 1< p < \frac{2q}{2q-1}, \, q > d,$$ B ~ q , p 2 - 2 / p ( Ω ) × B ~ q , p 2 - 2 / p ( Ω ) , 1 < p < 2 q 2 q - 1 , q > d , of tight Besov spaces for the fluid velocity component and the magnetic field component (each “close” to$$\textbf{L}^3(\Omega )$$ L 3 ( Ω ) for$$d = 3$$ d = 3 ). Showing maximal$$L^p$$ L p -regularity up to$$T = \infty $$ T = for the feedback stabilized linear system is critical for the analysis of well-posedness and stabilization of the feedback nonlinear problem. 
    more » « less
  5. Abstract We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H$$_2$$ 2 O and D$$_2$$ 2 O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$\rho (T)$$ ρ ( T ) , isothermal compressibility$$\kappa _T(T)$$ κ T ( T ) , and self-diffusion coefficientsD(T) of H$$_2$$ 2 O and D$$_2$$ 2 O are in excellent agreement with available experimental data; the isobaric heat capacity$$C_P(T)$$ C P ( T ) obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$_2$$ 2 O and D$$_2$$ 2 O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$ 2 O and D$$_2$$ 2 O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$ 2 O, from PIMD simulations, is located at$$P_c = 167 \pm 9$$ P c = 167 ± 9  MPa,$$T_c = 159 \pm 6$$ T c = 159 ± 6  K, and$$\rho _c = 1.02 \pm 0.01$$ ρ c = 1.02 ± 0.01  g/cm$$^3$$ 3 . Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$_2$$ 2 O is estimated to be$$P_c = 176 \pm 4$$ P c = 176 ± 4  MPa,$$T_c = 177 \pm 2$$ T c = 177 ± 2  K, and$$\rho _c = 1.13 \pm 0.01$$ ρ c = 1.13 ± 0.01  g/cm$$^3$$ 3 . Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water,$$P_c = 203 \pm 4$$ P c = 203 ± 4  MPa,$$T_c = 175 \pm 2$$ T c = 175 ± 2  K, and$$\rho _c = 1.03 \pm 0.01$$ ρ c = 1.03 ± 0.01  g/cm$$^3$$ 3 ). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$T_c$$ T c for D$$_2$$ 2 O and, particularly, H$$_2$$ 2 O suggest that improved water models are needed for the study of supercooled water. 
    more » « less