Single-molecule magnets (SMMs) are pivotal in molecular spintronics, showing unique quantum behaviors that can advance spin-based technologies. By incorporating SMMs into magnetic tunnel junctions (MTJs), new possibilities emerge for low-power, energy-efficient data storage, memory devices and quantum computing. This study explores how SMMs influence spin-dependent transport in antiferromagnet-based MTJ molecular spintronic devices (MTJMSDs). We fabricated cross-junction MTJ devices with an antiferromagnetic Ta/FeMn bottom electrode and ferromagnetic NiFe/Ta top electrode, with a ∼2 nm AlOx layer, designed so that the AlOx barrier thickness at the junction intersection matched the SMM length, allowing them to act as spin channels bridging the two electrodes. Following SMM treatment, the MTJMSDs exhibited significant current enhancement, reaching a peak of 40 μA at 400 mV at room temperature. In contrast, bare MTJ junctions experienced a sharp current reduction, falling to the pA range at 0°C and remaining stable at lower temperatures—a suppression notably greater than in SMM-treated samples (Ref: Sankhi et al., Journal of Magnetism and Magnetic Materials, p. 172608, 2024). Additional vibration sample magnetometry on pillar shaped devices of same material stacks indicated a slight decrease in magnetic moment after incorporating SMMs, suggesting an effect on magnetic coupling of molecule with electrodes. Overall, this work highlights the promise of antiferromagnetic materials in optimizing MTJMSD devices and advancing molecular spintronics. 
                        more » 
                        « less   
                    
                            
                            Structural Stability of Magnetic Tunnel Junction Based Molecular Spintronics Devices (MTJMSD)
                        
                    
    
            Abstract Harnessing the exotic properties of molecular level nanostructures to produce novel sensors, metamaterials, and futuristic computer devices can be technologically transformative. In addition, connecting the molecular nanostructures to ferromagnetic electrodes bring the unprecedented opportunity of making spin property based molecular devices. We have demonstrated that magnetic tunnel junction based molecular spintronics device (MTJMSD) approach to address numerous technological hurdles that have been inhibiting this field for decades (P. Tyagi, J. Mater. Chem., Vol. 21, 4733). MTJMSD approach is based on producing a capacitor like a testbed where two metal electrodes are separated by an ultrathin insulator and subsequently bridging the molecule nanostructure across the insulator to transform a capacitor into a molecular device. Our prior work showed that MTJMSDs produced extremely intriguing phenomenon such as room temperature current suppression by six orders, spin photovoltaic effect, and evolution of new forms of magnetic metamaterials arising due to the interaction of the magnetic a molecule with two ferromagnetic thin films. However, making robust and reproducible electrical connections with exotic molecules with ferromagnetic electrodes is full of challenges and requires attention to MTJMSD structural stability. This paper focuses on MTJMSD stability by describing the overall fabrication protocol and the associated potential threat to reliability. MTJMSD is based on microfabrication methods such as (a) photolithography for patterning the ferromagnetic electrodes, (b) sputtering of metallic thin films and insulator, and (c) at the end electrochemical process for bridging the molecules between two ferromagnetic films separated by ∼ 2nm insulating gap. For the successful MTJMSD fabrication, the selection of ferromagnetic metal electrodes and thickness was found to be a deterministic factor in designing the photolithography, thin film deposition strategy, and molecular bridging process. We mainly used isotropic NiFe soft magnetic material and anisotropic Cobalt (Co) with significant magnetic hardness. We found Co was susceptible to chemical etching when directly exposed to photoresist developer and aged molecular solution. However, NiFe was very stable against the chemicals we used in the MTJMSD fabrication. As compared to NiFe, the Co films with > 10nm thickness were susceptible to mechanical stress-induced nanoscale deformities. However, cobalt was essential to produce (a) low leakage current before transforming the capacitor from the magnetic tunnel junction into molecular devices and (b) tailoring the magnetic properties of the ferromagnetic electrodes. This paper describes our overall MTJMSD fabrication scheme and process optimization to overcome various challenges to produce stable and reliable MTJMSDs. We also discuss the role of mechanical stresses arising during the sputtering of the ultrathin insulator and how to overcome that challenge by optimizing the insulator growth process. This paper will benefit researchers striving to make nanoscale spintronics devices for solving grand challenges in developing advanced sensors, magnetic metamaterials, and computer devices. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1914751
- PAR ID:
- 10234812
- Date Published:
- Journal Name:
- roceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Spatial Impact Range of Single-Molecule Magnet (SMM) on Magnetic Tunnel Junction-Based Molecular Spintronic Devices (MTJMSDs) Marzieh Savadkoohi, Bishnu R Dahal, Eva Mutunga, Andrew Grizzle, Christopher D’Angelo, and Pawan Tyagi Magnetic Tunnel Junction-Based Molecular Spintronic Devices (MTJMSDs) are potential candidates for inventing highly correlated materials and devices. However, a knowledge gap exists about the impact of variation in length and thickness of ferromagnetic(FM) electrodes on molecular spintronics devices. This paper reports our experimental observations providing the dramatic impact of variation in ferromagnetic electrode length and thickness on paramagnetic molecule-based MTJMSD. Room temperature transport studies were performed to investigate the effect of FM electrode thickness. On the other hand, magnetic force microscopy measurements were conducted to understand the effect of FM electrode length extending beyond the molecular junction area, i.e., the site where paramagnetic molecules bridged between two FM. In the strong molecular coupling regime, transport study suggested thickness variation caused ~1000 to million-fold differences in junction conductivity. MFM study revealed near-zero magnetic contrast for pillar-shaped MTJMSD without any extended FM electrode. However, MFM images showed a multitude of microscopic magnetic phases on cross junction shaped MTJMSD where FM electrodes extended beyond the junction area. To understand the intriguing experimental results, we conducted an in-depth theoretical study using Monte Carlo Simulation (MCS) approach. MCS study utilized a Heisenberg atomic model of cross junction shaped MTJMSD to gain insights about room temperature transport and MFM experimental observations of microscopic MTJMSD. To make this study applicable for a wide variety of MTJMSDs, we systematically studied the effect of variation in molecular coupling strength between magnetic molecules and ferromagnetic (FM) electrodes of various dimensions.more » « less
- 
            Abstract Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and ferromagnets (FM) with a vast range of magnetic anisotropy. MTJMSD have experimentally shown intriguing microscopic phenomenon such as the development of highly contrasting magnetic phases on a ferromagnetic electrode at room temperature. This paper focuses on Monte Carlo Simulations (MCS) on MTJMSD to understand the potential mechanism and explore fundamental knowledge about the impact of magnetic anisotropy. The selection of MCS is based on our prior study showing the potential of MCS in explaining experimental results (Tyagi et al. in Nanotechnology 26:305602, 2015). In this paper, MCS is carried out on the 3D Heisenberg model of cross-junction-shaped MTJMSDs. Our research represents the experimentally studied cross-junction-shaped MTJMSD where paramagnetic molecules are covalently bonded between two FM electrodes along the exposed side edges of the magnetic tunnel junction (MTJ). We have studied atomistic MTJMSDs properties by simulating a wide range of easy-axis anisotropy for the case of experimentally observed predominant molecule-induced strong antiferromagnetic coupling. Our study focused on understanding the effect of anisotropy of the FM electrodes on the overall MTJMSDs at various temperatures. This study shows that the multiple domains of opposite spins start to appear on an FM electrode as the easy-axis anisotropy increases. Interestingly, MCS results resembled the experimentally observed highly contrasted magnetic zones on the ferromagnetic electrodes of MTJMSD. The magnetic phases with starkly different spins were observed around the molecular junction on the FM electrode with high anisotropy.more » « less
- 
            Magnetic Tunnel Junction-based molecular spintronics devices (MTJMSDs) hold great potential for integrating paramagnetic molecules with ferromagnetic electrodes, creating a diverse array of metamaterials with novel magnetic behaviors. Understanding interactions, especially between molecules and electrode materials, is essential to advancing this field. In this study, we used Monte Carlo simulation (MCS) to examine the influence of Dzyaloshinskii-Moriya interaction(DMI) on the MTJMSDs. Our simulations reveal that the presence of DMI interaction significantly lowered the magnetization of the ferromagnetic (FM) electrode. This DMI effect on the FM electrode provides a potential mechanism to explain the experimental observations of losing magnetic contrast on one FM electrode of the MTJMSD. A cross-junction-shaped MTJMSD, where several thousands of paramagnetic Octametallic Molecular Complexes are covalently bonded between two FM electrodes along the junction edges, exhibited loss of magnetic contrast on one ferromagnet in MFM imaging. DMI's impact on FM electrode properties resembles the experimental observation on MTJMSD. Our MCS showed that the strong DMI induced alternating magnetic bands aligned in opposite directions on a ferromagnetic electrode. Molecule bridges transported the effect of the DMI-induced magnetic phases onto the FM electrode connected to the other end of the molecule. For the specific range of DMI, the direction of magnetization of the FM electrode present on the other end of the molecular channel could switch based on the nature of the DMI-induced magnetic phase present in the junction area. This study underscores the importance of antisymmetric interactions, like DMI, in influencing the magnetic properties of MTJMSD systems. In future MSD experimental studies, DMI on FM electrodes can be achieved by using suitable molecule-FM interfaces or multilayer FM electrodes harnessing spin-orbit coupling. MTJMSD test bed provides excellent opportunities for creating unprecedentedly strong molecule-FM electrode coupling and using multilayer electrodes.more » « less
- 
            "Magnetic tunnel junction-based molecular spintronics devices (MTJMSDs) are designed by covalently connecting the paramagnetic molecules across two ferromagnets (FM) electrodes of a magnetic tunnel junction (MTJ). MTJMSD provides opportunities to connect FM electrodes of a vast range of anisotropy properties to a variety of molecules of length scale. Our prior studies showed that the paramagnetic molecules can produce strong antiferromagnetic coupling with FM electrodes. The device properties of MTJMSD depend upon various factors such as anisotropy, various couplings, spin fluctuation, thermal energy, device size, etc. Here, we report a theoretical Monte Carlo Simulation (MCS) study to explain the impact of anisotropy on the MTJMSD equilibrium properties. We studied the magnetic properties of MTJMSDs when in-plane and out-of-plane anisotropies acted simultaneously and together on one of its ferromagnetic electrodes. In-plane anisotropy causes multiple magnetic phases of opposite spins. The multiple magnetic phases vanished at higher thermal energy. The device still maintained higher magnetic moment because of anisotropy. The out-of-plane anisotropy caused a dominant magnetic phase in an electrode rather than multiple magnetic phases. The simultaneous in-plane and out-of-plane anisotropies on the same electorate negated the anisotropy effect. The study of the competing effect of anisotropies opens the insight into experimental observations of MTJMSD studies."more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    