With a variable spin state, paramagnetic molecules can affect the impact of magnetic exchange coupling strength between two ferromagnetic electrodes. Our magnetic tunnel junction based molecular spintronics devices (MTJMSD) were successful in connecting paramagnetic single molecular magnet (SMM) between two ferromagnetic electrodes. Isolated SMM exhibited a wide range of spin states. However, it was extremely challenging to identify the SMM spin state when connected to the ferromagnetic electrodes. Our prior experimental and Monte Carlo Simulations (MCS) studies showed that paramagnetic molecules produced unprecedented strong antiferromagnetic coupling between two ferromagnets at room temperature. The overall antiferromagnetic coupling occurred when a paramagnetic SMM made antiferromagnetic coupling to the first electrode and ferromagnetic coupling to the second ferromagnetic electrode. This paper studies the impact of variable molecular spin states of the SMMs, producing strong antiferromagnetic coupling between the ferromagnetic electrodes of MTJMSD. The MTJMSD used in this study was represented by an 11 x 50 x 50 Ising model, with 11 being the thickness of the MTJMSD and 5 x 10 x 50 being each electrode’s size. We employed a continuous MCS algorithm to investigate SMM’s spin state’s impact as a function of molecular exchange coupling strength and thermal energy. 
                        more » 
                        « less   
                    This content will become publicly available on March 1, 2026
                            
                            Single molecule magnet’s (SMM) effects on antiferromagnet-based magnetic tunnel junction
                        
                    
    
            Single-molecule magnets (SMMs) are pivotal in molecular spintronics, showing unique quantum behaviors that can advance spin-based technologies. By incorporating SMMs into magnetic tunnel junctions (MTJs), new possibilities emerge for low-power, energy-efficient data storage, memory devices and quantum computing. This study explores how SMMs influence spin-dependent transport in antiferromagnet-based MTJ molecular spintronic devices (MTJMSDs). We fabricated cross-junction MTJ devices with an antiferromagnetic Ta/FeMn bottom electrode and ferromagnetic NiFe/Ta top electrode, with a ∼2 nm AlOx layer, designed so that the AlOx barrier thickness at the junction intersection matched the SMM length, allowing them to act as spin channels bridging the two electrodes. Following SMM treatment, the MTJMSDs exhibited significant current enhancement, reaching a peak of 40 μA at 400 mV at room temperature. In contrast, bare MTJ junctions experienced a sharp current reduction, falling to the pA range at 0°C and remaining stable at lower temperatures—a suppression notably greater than in SMM-treated samples (Ref: Sankhi et al., Journal of Magnetism and Magnetic Materials, p. 172608, 2024). Additional vibration sample magnetometry on pillar shaped devices of same material stacks indicated a slight decrease in magnetic moment after incorporating SMMs, suggesting an effect on magnetic coupling of molecule with electrodes. Overall, this work highlights the promise of antiferromagnetic materials in optimizing MTJMSD devices and advancing molecular spintronics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1914751
- PAR ID:
- 10618680
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 15
- Issue:
- 3
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Understanding the magnetic molecules’ interaction with different combinations of metal electrodes is vital to advancing the molecular spintronics field. This paper describes experimental and theoretical understanding showing how paramagnetic single-molecule magnet (SMM) catalyzes long-range effects on metal electrodes and, in that process, loses its basic magnetic properties. For the first time, our Monte Carlo simulations, verified for consistency with regards to experimental studies, discuss the properties of the whole device and a generic paramagnetic molecule analog (GPMA) connected to the combinations of ferromagnet-ferromagnet, ferromagnet-paramagnet, and ferromagnet-antiferromagnet metal electrodes. We studied the magnetic moment vs. magnetic field of GPMA exchange coupled between two metal electrodes along the exposed side edge of cross junction-shaped magnetic tunnel junction (MTJ). We also studied GPMA-metal electrode interfaces’ magnetic moment vs. magnetic field response. We have also found that the MTJ dimension impacted the molecule response. This study suggests that SMM spin at the MTJ exposed sides offers a unique and high-yield method of connecting molecules to virtually endless magnetic and nonmagnetic electrodes and observing unprecedented phenomena in the molecular spintronics field.more » « less
- 
            The single-molecule magnet (SMM) is demonstrated here to transform conventional magnetic tunnel junctions (MTJ), a memory device used in present-day computers, into solar cells. For the first time, we demonstrated an electronic spin-dependent solar cell effect on an SMM-transformed MTJ under illumination from unpolarized white light. We patterned cross-junction-shaped devices forming a CoFeB/MgO/CoFeB-based MTJ. The MgO barrier thickness at the intersection between the two exposed junction edges was less than the SMM extent, which enabled the SMM molecules to serve as channels to conduct spin-dependent transport. The SMM channels yielded a region of long-range magnetic ordering around these engineered molecular junctions. Our SMM possessed a hexanuclear [Mn6(μ3-O)2(H2N-sao)6(6-atha)2(EtOH)6] [H2N-saoH = salicylamidoxime, 6-atha = 6-acetylthiohexanoate] complex and thiols end groups to form bonds with metal films. SMM-doped MTJs were shown to exhibit a solar cell effect and yielded ≈ 80 mV open-circuit voltage and ≈ 10 mA/cm2 saturation current density under illumination from one sun equivalent radiation dose. A room temperature Kelvin Probe AFM (KPAFM) study provided direct evidence that the SMM transformed the electronic properties of the MTJ's electrodes over a lateral area in excess of several thousand times larger in extent than the area spanned by the molecular junctions themselves. The decisive factor in observing this spin photovoltaic effect is the formation of SMM spin channels between the two different ferromagnetic electrodes, which in turn is able to catalyze the long-range transformation in each electrode around the junction area.more » « less
- 
            Paramagnetic single-molecule magnets (SMMs) interacting with the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) produce a new system. The properties and future scope of new systems differ dramatically from the properties of isolated molecules and ferromagnets. However, it is unknown how far deep in the ferromagnetic electrode the impact of the paramagnetic molecule and ferromagnet interactions can travel for various levels of molecular spin states. Our prior experimental studies showed two types of paramagnetic SMMs, the hexanuclear Mn 6 and octanuclear Fe–Ni molecular complexes, covalently bonded to ferromagnets produced unprecedented strong antiferromagnetic coupling between two ferromagnets at room temperature leading to a number of intriguing observations (P. Tyagi, et al. , Org. Electron. , 2019, 64 , 188–194. P. Tyagi, et al. , RSC Adv. , 2020, 10 , (22), 13006–13015). This paper reports a Monte Carlo Simulations (MCS) study focusing on the impact of the molecular spin state on a cross junction shaped MTJ based molecular spintronics device (MTJMSD). Our MCS study focused on the Heisenberg model of MTJMSD and investigated the impact of various molecular coupling strengths, thermal energy, and molecular spin states. To gauge the impact of the molecular spin state on the region of ferromagnetic electrodes, we examined the spatial distribution of molecule-ferromagnet correlated phases. Our MCS study shows that under a strong coupling regime, the molecular spin state should be ∼30% of the ferromagnetic electrode's atomic spins to create long-range correlated phases.more » « less
- 
            Spatial Impact Range of Single-Molecule Magnet (SMM) on Magnetic Tunnel Junction-Based Molecular Spintronic Devices (MTJMSDs) Marzieh Savadkoohi, Bishnu R Dahal, Eva Mutunga, Andrew Grizzle, Christopher D’Angelo, and Pawan Tyagi Magnetic Tunnel Junction-Based Molecular Spintronic Devices (MTJMSDs) are potential candidates for inventing highly correlated materials and devices. However, a knowledge gap exists about the impact of variation in length and thickness of ferromagnetic(FM) electrodes on molecular spintronics devices. This paper reports our experimental observations providing the dramatic impact of variation in ferromagnetic electrode length and thickness on paramagnetic molecule-based MTJMSD. Room temperature transport studies were performed to investigate the effect of FM electrode thickness. On the other hand, magnetic force microscopy measurements were conducted to understand the effect of FM electrode length extending beyond the molecular junction area, i.e., the site where paramagnetic molecules bridged between two FM. In the strong molecular coupling regime, transport study suggested thickness variation caused ~1000 to million-fold differences in junction conductivity. MFM study revealed near-zero magnetic contrast for pillar-shaped MTJMSD without any extended FM electrode. However, MFM images showed a multitude of microscopic magnetic phases on cross junction shaped MTJMSD where FM electrodes extended beyond the junction area. To understand the intriguing experimental results, we conducted an in-depth theoretical study using Monte Carlo Simulation (MCS) approach. MCS study utilized a Heisenberg atomic model of cross junction shaped MTJMSD to gain insights about room temperature transport and MFM experimental observations of microscopic MTJMSD. To make this study applicable for a wide variety of MTJMSDs, we systematically studied the effect of variation in molecular coupling strength between magnetic molecules and ferromagnetic (FM) electrodes of various dimensions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
