Light‐emitting diodes (LEDs) are a lighting technology with a huge and ascending market. Typically, LED backlights are often paired with inorganic phosphors made from rare‐earth elements (REEs) to tune the emission lineshapes for different applications. However, REE production is a resource‐intensive process with many negative environmental impacts. Herein organic hybrid LEDs are developed using organic dyes synthesized from an abundant and non‐toxic natural product (theobromine) to replace REE phosphors. The resulted hybrid LED generates continuous emission from 400–740 nm, resulting in a high color rendering index (the current industry standard) of 90 and a color fidelity index (the most advanced and comprehensive standard) of 92, challenging commercial LEDs based on REE phosphors. In addition, the light‐converting composite is made from 99 wt% SBS, an inexpensive industrial polymer, and 1 wt% theobromine dyes, reducing the cost of the light converter to ¢1.30 for a 1 W LED, compared to approximately ¢ 19.2 of commercial products. The light converting efficiency of the dye‐SBS composite is 82%. Excited state kinetics experiments are also conducted to provide guidance to further increase the light‐converting efficiency of the theobromine dyes while maintaining excellent color rendering and fidelity.
- NSF-PAR ID:
- 10234860
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- ISSN:
- 2050-7526
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Perovskite light‐emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi‐2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light‐emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi‐2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi‐2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi‐2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m−2and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs.
-
In recent years, organic dye molecules as photosensitizers have played a significant role in the field of dye-sensitized solar cells. In this context, two primary dihydroindolocarbazole-based organic dyes (sk201 and sk202), which were synthesized recently by Song et al., and three further designed dyes (DMZ1-3) were theoretically investigated based on density functional theory and time-dependent density functional theory. Molecular geometries, absorption spectra, charge transfer, molecular electrostatic potential and nonlinear optical properties were quantificationally studied and visually presented to reveal the relationships between the molecular structures and performances of dyes. The effects of joining the isolated dyes and TiO2 on the molecular absorption spectra and energy levels were analyzed. Moreover, several parameters, such as efficiency of light-harvesting, driving forces of electron regeneration and injection, excited-state lifetime and vertical dipole moment, were calculated to give the multi-angle demonstrations of the photovoltaic performances for these dyes.more » « less
-
Iodine binding to thiophene rings in dyes for dye-sensitized solar cells (DSCs) has been hypothesized to be performance degrading in a number of literature cases. Binding of iodine to dyes near the semiconductor surface can promote undesirable electron transfers and lower the overall efficiency of devices. Six thiophene or furan containing dye analogs were synthesized to analyze iodine binding to the dyes via Raman spectroscopy, UV-Vis studies, device performance metrics and density functional theory (DFT) based computations. Evidence suggests I 2 binds thiophene-based dyes stronger than furan-based dyes. This leads to higher DSC device currents and voltages from furan analogues, and longer electron lifetimes in DSC devices using furan based dyes. Raman spectrum of the TiO 2 surface-bound dyes reveals additional and more instense peaks for thiophene dyes in the presence of I 2 relative to no I 2 . Additionally, broader and shifted UV-Vis peaks are observed for thiophene dyes in the presence of I 2 on TiO 2 films suggesting significant interaction between the dye molecules and I 2 . These observations are also supported by DFT and TD-DFT calculations which indicate the absence of a key geometric energy minimum in the dye–I 2 ground state for furan dyes which are readily observed for the thiophene based analogues.more » « less
-
Abstract The combination of inorganic and organic semiconductors in a heterojunction is considered a promising approach to overcome limitations of each individual material class. However, to date only few examples of improved (opto‐)electronic functionality have been realized with such hybrid heterojunctions. The key to unraveling the full potential offered by inorganic/organic semiconductor heterojunctions is the ability to deliberately control the interfacial electronic energy levels. Here, a universal approach to adjust the offset between the energy levels at inorganic/organic semiconductor interfaces is demonstrated: the interlayer method. A monolayer‐thick interlayer comprising strong electron donor or acceptor molecules is inserted between the two semiconductors and alters the energy level alignment due to charge transfer with the inorganic semiconductor. The general applicability of this method by tuning the energy levels of hydrogenated silicon relative to those of vacuum‐processed films of a molecular semiconductor as well as solution‐processed films of a polymer semiconductor is exemplified, and is shown that the energy level offset can be changed by up to 1.8 eV. This approach can be used to adjust the energy levels at the junction of a desired material pair at will, and thus paves the way for novel functionalities of optoelectronic devices.