skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finite generation of cohomology for Drinfeld doubles of finite group schemes
Award ID(s):
2001608
PAR ID:
10235753
Author(s) / Creator(s):
Date Published:
Journal Name:
Selecta Mathematica
Volume:
27
Issue:
2
ISSN:
1022-1824
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Taylor And Francis Online (Ed.)
    We present useful connections between the finite difference and the finite element methods for a model boundary value problem. We start from the observation that, in the finite element context, the interpolant of the solution in one dimension coincides with the finite element approximation of the solution. This result can be viewed as an extension of the Green function formula for the solution at the continuous level. We write the finite difference and the finite element systems such that the two corresponding linear systems have the same stiffness matrices and compare the right hand side load vectors for the two methods. Using evaluation of the Green function, a formula for the inverse of the stiffness matrix is extended to the case of non-uniformly distributed mesh points. We provide an error analysis based on the connection between the two methods and estimate the energy norm of the difference of the two solutions. Interesting extensions to the 2D case are provided. 
    more » « less
  2. null (Ed.)
  3. Let G G be a finite group admitting a coprime automorphism α \alpha of order e e . Denote by I G ( α ) I_G(\alpha ) the set of commutators g − 1 g α g^{-1}g^\alpha , where g ∈ G g\in G , and by [ G , α ] [G,\alpha ] the subgroup generated by I G ( α ) I_G(\alpha ) . We study the impact of I G ( α ) I_G(\alpha ) on the structure of [ G , α ] [G,\alpha ] . Suppose that each subgroup generated by a subset of I G ( α ) I_G(\alpha ) can be generated by at most r r elements. We show that the rank of [ G , α ] [G,\alpha ] is ( e , r ) (e,r) -bounded. Along the way, we establish several results of independent interest. In particular, we prove that if every element of I G ( α ) I_G(\alpha ) has odd order, then [ G , α ] [G,\alpha ] has odd order too. Further, if every pair of elements from I G ( α ) I_G(\alpha ) generates a soluble, or nilpotent, subgroup, then [ G , α ] [G,\alpha ] is soluble, or respectively nilpotent. 
    more » « less