skip to main content


Title: A Dual Catalyst with SERS Activity for Probing Stepwise Reduction and Oxidation Reactions
Abstract

Aromatic azo compounds are high‐value chemicals extensively used as pigments, drugs, and food additives, but their production typically requires stoichiometric amounts of environmentally unfriendly metals or nitrites. There is an urgent need to develop a dual catalytic system capable of reducing nitroaromatics to aromatic amines, followed by their oxidation to azo compounds. Here we report such a dual catalyst based on Ag@Pd‐Ag core‐frame nanocubes for the stepwise conversion of 4‐nitrothiophenol totrans‐4,4′‐dimercaptoazobenzene under ambient conditions. Our in situ surface‐enhanced Raman spectroscopy study reveals three sequential processes that include the Pd‐catalyzed reduction of 4‐nitrothiophenol to 4‐aminothiophenol by hydrogen, a period during which the 4‐aminothiophenol remain unchanged until all hydrogen has depleted, and the Ag‐catalyzed oxidation of 4‐aminothiophenol totrans‐4,4′‐dimercaptoazobenzene by the O2from air. This work will lead to an environmentally friendly and sustainable approach to the production of aromatic azo compounds.

 
more » « less
NSF-PAR ID:
10235787
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemNanoMat
Volume:
2
Issue:
8
ISSN:
2199-692X
Page Range / eLocation ID:
p. 786-790
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the synthesis of bifunctional Ag@SiO2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl4solution into an aqueous suspension of Ag@SiO2core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO2shellin situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO2sea. By controlling the amount of HAuCl4titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO2shell, embracing catalytic activity toward the reduction of 4‐nitrophenol to 4‐aminophenol by NaBH4. While the Ag in the core provides a strong surface‐enhanced Raman scattering activity, the SiO2sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au‐catalyzed reduction of 4‐nitrothiophenol to 4‐aminothiophenol by NaBH4and Ag‐catalyzed oxidation of 4‐aminothiophenol totrans‐4,4′‐dimercaptoazobenzene by the O2from air in the same reaction system.

     
    more » « less
  2. This report highlights recent progress in the rational design, synthesis, and applications of bimetallic nanocrystals with integrated SERS and catalytic activities. The ultimate goal is to develop bifunctional nanocrystals as a SERS probe for monitoring a catalytic reaction in situ . We first introduce seeded growth as a facile and powerful route to the syntheses of bifunctional nanocrystals with catalytic activities arising from Au or Pd, in addition to plasmonic properties originating from Ag or Au. Specifically, we discuss two distinctive pathways, namely conformal and site-selected deposition of a second metal on the surface of a noble-metal nanocrystal seed, for the fabrication of bifunctional nanocrystals with controlled composition and morphology. We then discuss the application of these bifunctional nanocrystals as unique probes for in situ SERS monitoring of the Au or Pd-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and the Ag-catalyzed oxidation of 4-aminothiophenol to trans -4,4′-dimercaptoazobenzene by the O 2 from air. We conclude this review with perspectives on the future development. 
    more » « less
  3. Abstract

    The search for more effective and highly selective C–H bond oxidation of accessible hydrocarbons and biomolecules is a greatly attractive research mission. The elucidating of mechanism and controlling factors will, undoubtedly, help to broaden scope of these synthetic protocols, and enable discovery of more efficient, environmentally benign, and highly practical new C–H oxidation reactions. Here, we reveal the stepwise intramolecular SN2 nucleophilic substitution mechanism with the rate-limiting C–O bond formation step for the Pd(II)-catalyzed C(sp3)–H lactonization in aromatic 2,6-dimethylbenzoic acid. We show that for this reaction, the direct C–O reductive elimination from both Pd(II) and Pd(IV) (oxidized by O2oxidant) intermediates is unfavorable. Critical factors controlling the outcome of this reaction are the presence of the η3-(π-benzylic)–Pd and K+–O(carboxylic) interactions. The controlling factors of the benzylic vs ortho site-selectivity of this reaction are the: (a) difference in the strains of the generated lactone rings; (b) difference in the strengths of the η3-(π-benzylic)–Pd and η2-(π-phenyl)–Pd interactions, and (c) more pronounced electrostatic interaction between the nucleophilic oxygen and K+cation in the ortho-C–H activation transition state. The presented data indicate the utmost importance of base, substrate, and ligand in the selective C(sp3)–H bond lactonization in the presence of C(sp2)–H.

     
    more » « less
  4. Biomass is abundant, inexpensive and renewable, therefore, it is highly expected to play a significant role in our future energy and chemical landscapes. The US DOE has identified furanic compounds (furfural and 5-(hydroxymethyl)furfural (HMF)) as the top platform building-block chemicals that can be readily derived from biomass sources [1]. Electrocatalytic conversion of these furanic compounds is an emerging route for the sustainable production of valuable chemicals [2, 3]. In my presentation, I will first present our recent mechanistic study of electrochemical reduction of furfural through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies [4]. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important bio-based polymer precursors and fuels. Next, I will present electrocatalytic conversion of HMF to two biobased monomers in an H-type electrochemical cell [5]. HMF reduction (hydrogenation) to 2,5-bis(hydroxymethyl)furan (BHMF) was achieved under mild electrolyte conditions and ambient temperature using a Ag/C cathode. Meanwhile, HMF oxidation to 2,5-furandicarboxylic acid (FDCA) with ~100% efficiency was facilitated under the same conditions by a homogeneous nitroxyl radical redox mediator, together with an inexpensive carbon felt anode. The selectivity and efficiency for Ag-catalyzed BHMF formation were sensitive to cathode potential, owing to competition from HMF hydrodimerization reactions and water reduction (hydrogen evolution). Moreover, the carbon support of Ag/C was active for HMF reduction and contributed to undesired dimer/oligomer formation at strongly cathodic potentials. As a result, high BHMF selectivity and efficiency were only achieved within a narrow potential range near –1.3 V. Fortunately, the selectivity of redox-mediated HMF oxidation was insensitive to anode potential, thus allowing HMF hydrogenation and oxidation half reactions to be performed together in a single cathode-potential-controlled cell. Electrocatalytic HMF conversion in a paired cell achieved high molar yields of BHMF and FDCA, and nearly doubled electron efficiency compared to the unpaired cell. Finally, I will briefly introduce our recent work on the development of a three-electrode flow cell with an oxide-derived Ag (OD-Ag) cathode and catbon felt anode for paring elecatalytic oxidation and reduction of HMF. The flow cell has a remarkable cell voltage reduction from ~7.5 V to ~2.0 V by transferring the electrolysis from the H-type cell to the flow cell [6]. This represents a more than fourfold increase in the energy efficiency at the 10 mA operation. A combined faradaic efficiency of 163% was obtained to BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ~0.85 V at 10 mA operation. These paired processes have shown potential for integrating renewable electricity and carbon for distributed chemical manufacturing in the future. 
    more » « less
  5. Abstract

    Exponential growth in the field of covalent–organic frameworks (COFs) is emanating from the direct correlation between designing principles and desired properties. The comparison of catalytic activity between single‐pore and dual‐pore COFs is of importance to establish structure–function relationship. Herein, the synthesis of imine‐linked dual‐pore [(BPyDC)]x%‐ETTA COFs (x = 0%, 25%, 50%, 75%, 100%) with controllable bipyridine content is fulfilled by three‐component condensation of 4,4′,4″,4′″‐(ethene‐1,1,2,2‐tetrayl)tetraaniline (ETTA), 4,4′‐biphenyldialdehyde, and 2,2′‐bipyridyl‐5,5′‐dialdehyde in different stoichiometric ratio. The strong coordination of bipyridine moieties of [(BPyDC)]x%‐ETTA COFs with palladium imparts efficient catalytic active sites for selective functionalization of sp2CH bond to CX (X = Br, Cl) or CO bonds in good yield. To broaden the scope of regioselective CH functionalization, a wide range of electronically and sterically substituted substrates under optimized catalytic condition are investigated. A comparison of the catalytic activity of palladium decorated dual‐pore frameworks with single‐pore imine‐linked Pd(II) @ Py‐2,2′‐BPyDC framework  is undertaken. The finding of this work provides a sporadic example of chelation‐assisted CH functionalization and disclosed an in‐depth comparison of the relationship between superior catalytic activity and core properties of rationally designed imine linked frameworks.

     
    more » « less