skip to main content


Title: Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface‐Enhanced Raman Spectroscopy
Abstract

We report the synthesis of bifunctional Ag@SiO2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl4solution into an aqueous suspension of Ag@SiO2core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO2shellin situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO2sea. By controlling the amount of HAuCl4titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO2shell, embracing catalytic activity toward the reduction of 4‐nitrophenol to 4‐aminophenol by NaBH4. While the Ag in the core provides a strong surface‐enhanced Raman scattering activity, the SiO2sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au‐catalyzed reduction of 4‐nitrothiophenol to 4‐aminothiophenol by NaBH4and Ag‐catalyzed oxidation of 4‐aminothiophenol totrans‐4,4′‐dimercaptoazobenzene by the O2from air in the same reaction system.

 
more » « less
NSF-PAR ID:
10034179
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemNanoMat
Volume:
3
Issue:
4
ISSN:
2199-692X
Page Range / eLocation ID:
p. 245-251
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the fabrication of Ag–Au cuboctahedral nanoboxes enclosed by {100} and {111} facets, respectively, through the orthogonal deposition of Au on two different facets of Ag cuboctahedra. Specifically, we titrate aqueous HAuCl 4 into an aqueous mixture containing Ag cuboctahedra, ascorbic acid, and NaOH (under basic conditions), in the presence of poly(vinylpyrrolidone) (PVP) and cetyltrimethylammonium chloride (CTAC), respectively. In the case of PVP, the oxidation of Ag was initiated from the {111} facets of the cuboctahedra through the galvanic replacement reaction between Au( iii ) and Ag, accompanied by the deposition of Au onto the {100} facets. Because the dissolved Ag( i ) ions could react with NaOH to form Ag 2 O on the {111} facets and thus terminate the galvanic reaction, the Au( iii ) ions would be further reduced by the ascorbate monoanion (HAsc − ) to generate Au atoms for their continuing deposition on the {100} facets, converting Ag cuboctahedra to Ag@Au {100} cuboctahedra. Upon the etching of Ag from the core, we obtained Ag–Au cuboctahedral nanoboxes enclosed by {100} facets. In contrast, when CTAC was present, the oxidation of Ag through a galvanic reaction could continuously proceed on {100} facets as the dissolved Ag( i ) ions would react with the excessive amount of Cl − ions derived from CTAC to produce soluble AgCl 2 − ions rather than insoluble Ag 2 O. As a result, the dissolved Ag( i ) and Au( iii ) ions would be co-reduced by HAsc − for the generation of Ag and Au atoms, followed by their co-deposition onto {111} facets for the generation of Ag@Au {111} concave cuboctahedra. After the removal of Ag from the core by etching, we obtained Ag–Au {111} cuboctahedral nanoboxes enclosed by {111} facets. Both samples of cuboctahedral nanoboxes exhibited strong optical absorption in the infrared region. Interestingly, the cuboctahedral nanoboxes enclosed by {111} facets showed significantly enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH 4 relative to their counterparts encased by {100} facets. 
    more » « less
  2. This report highlights recent progress in the rational design, synthesis, and applications of bimetallic nanocrystals with integrated SERS and catalytic activities. The ultimate goal is to develop bifunctional nanocrystals as a SERS probe for monitoring a catalytic reaction in situ . We first introduce seeded growth as a facile and powerful route to the syntheses of bifunctional nanocrystals with catalytic activities arising from Au or Pd, in addition to plasmonic properties originating from Ag or Au. Specifically, we discuss two distinctive pathways, namely conformal and site-selected deposition of a second metal on the surface of a noble-metal nanocrystal seed, for the fabrication of bifunctional nanocrystals with controlled composition and morphology. We then discuss the application of these bifunctional nanocrystals as unique probes for in situ SERS monitoring of the Au or Pd-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and the Ag-catalyzed oxidation of 4-aminothiophenol to trans -4,4′-dimercaptoazobenzene by the O 2 from air. We conclude this review with perspectives on the future development. 
    more » « less
  3. We report a facile route to the synthesis of Ag@Au–Pt trimetallic nanocubes in which the Ag, Au, and Pt atoms are exposed at the corners, side faces, and edges, respectively. Our success relies on the use of Ag@Au nanocubes, with Ag 2 O patches at the corners and Au on the side faces and edges, as seeds for the site-selective deposition of Pt on the edges only in a reaction system containing ascorbic acid (H 2 Asc) and poly(vinylpyrrolidone). At an initial pH of 3.2, H 2 Asc can dissolve the Ag 2 O patches, exposing the Ag atoms at the corners of a nanocube. Upon the injection of the H 2 PtCl 6 precursor, the Pt atoms derived from the reduction by both H 2 Asc and Ag are preferentially deposited on the edges, leading to the formation of Ag@Au–Pt trimetallic nanocubes. We demonstrate the use of 2,6-dimethylphenyl isocyanide as a molecular probe to confirm and monitor the deposition of Pt atoms on the edges of nanocubes through surface-enhanced Raman scattering (SERS). We further explore the use of these bifunctional trimetallic nanoparticles with integrated plasmonic and catalytic properties for in situ SERS monitoring the reduction of 4-nitrothiophenol by NaBH 4 . Upon the removal of Ag via H 2 O 2 etching, the Ag@Au–Pt nanocubes evolve into trimetallic nanoboxes with a wall thickness of about 2 nm and well-defined openings at the corners. The trimetallic nanoboxes embrace plasmon resonance peaks in the near-infrared region with potential in biomedical applications. 
    more » « less
  4. Abstract

    Engineering the crystal structure of Pt–M (M = transition metal) nanoalloys to chemically ordered ones has drawn increasing attention in oxygen reduction reaction (ORR) electrocatalysis due to their high resistance against M etching in acid. Although Pt–Ni alloy nanoparticles (NPs) have demonstrated respectable initial ORR activity in acid, their stability remains a big challenge due to the fast etching of Ni. In this work, sub‐6 nm monodisperse chemically orderedL10‐Pt–Ni–Co NPs are synthesized for the first time by employing a bifunctional core/shell Pt/NiCoOxprecursor, which could provide abundant O‐vacancies for facilitated Pt/Ni/Co atom diffusion and prevent NP sintering during thermal annealing. Further, Co doping is found to remarkably enhance the ferromagnetism (room temperature coercivity reaching 2.1 kOe) and the consequent chemical ordering ofL10‐Pt–Ni NPs. As a result, the best‐performing carbon supportedL10‐PtNi0.8Co0.2catalyst reveals a half‐wave potential (E1/2) of 0.951 V versus reversible hydrogen electrode in 0.1mHClO4with 23‐times enhancement in mass activity over the commercial Pt/C catalyst along with much improved stability. Density functional theory (DFT) calculations suggest that theL10‐PtNi0.8Co0.2core could tune the surface strain of the Pt shell toward optimized Pt–O binding energy and facilitated reaction rate, thereby improving the ORR electrocatalysis.

     
    more » « less
  5. Abstract

    Aromatic azo compounds are high‐value chemicals extensively used as pigments, drugs, and food additives, but their production typically requires stoichiometric amounts of environmentally unfriendly metals or nitrites. There is an urgent need to develop a dual catalytic system capable of reducing nitroaromatics to aromatic amines, followed by their oxidation to azo compounds. Here we report such a dual catalyst based on Ag@Pd‐Ag core‐frame nanocubes for the stepwise conversion of 4‐nitrothiophenol totrans‐4,4′‐dimercaptoazobenzene under ambient conditions. Our in situ surface‐enhanced Raman spectroscopy study reveals three sequential processes that include the Pd‐catalyzed reduction of 4‐nitrothiophenol to 4‐aminothiophenol by hydrogen, a period during which the 4‐aminothiophenol remain unchanged until all hydrogen has depleted, and the Ag‐catalyzed oxidation of 4‐aminothiophenol totrans‐4,4′‐dimercaptoazobenzene by the O2from air. This work will lead to an environmentally friendly and sustainable approach to the production of aromatic azo compounds.

     
    more » « less