skip to main content


Title: Controlled Ring‐Opening Polymerization of O ‐Carboxyanhydrides Using a β‐Diiminate Zinc Catalyst
Abstract

RecentlyO‐carboxyanhydrides (OCAs) have emerged as a class of viable monomers which can undergo ring‐opening polymerization (ROP) to prepare poly(α‐hydroxyalkanoic acid) with functional groups that are typically difficult to achieve by ROP of lactones. Organocatalysts for the ROP of OCAs, such as dimethylaminopyridine (DMAP), may induce undesired epimerization of the α‐carbon atom in polyesters resulting in the loss of isotacticity. Herein, we report the use of (BDI‐IE)Zn(OCH(CH3)COOCH3) ((BDI)Zn‐1, (BDI‐IE)=2‐((2,6‐diethylphenyl)amino)‐4‐((2,6‐diisopropylphenyl)imino)‐2‐pentene), for the controlled ROP of various OCAs without epimerization. Both homopolymers and block copolymers with controlled molecular weights, narrow molecular weight distributions, and isotactic backbones can be readily synthesized. (BDI)Zn‐1 also enables controlled copolymerization of OCAs and lactide, facilitating the synthesis of block copolymers potentially useful for various biomedical applications. Preliminary mechanistic studies suggest that the monomer/dimer equilibrium of the zinc catalyst influences the ROP of OCAs, with the monomeric (BDI)Zn‐1 possessing superior catalytic activity for the initiation of ROP in comparison to the dimeric (BDI)Zn complex.

 
more » « less
NSF-PAR ID:
10236051
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
128
Issue:
42
ISSN:
0044-8249
Page Range / eLocation ID:
p. 13204-13208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ring‐opening polymerization (ROP) of lactones or cyclic (di)esters is a powerful method to produce well‐defined, high‐molecular‐weight (bio)degradable aliphatic polyesters. While the ROP of lactones of various ring sizes has been extensively studied, the ROP of the simplest eight‐membered lactone, 7‐heptanolactone (7‐HL), has not been reported using metal‐based catalysts. Accordingly, this contribution reports the ROP of 7‐HL via metal‐catalyzed coordinative‐insertion polymerization to the corresponding high‐molecular‐weight polyester, poly(7‐hydroxyheptanoate) (P7HHp). The resulting P7HHp is a semi‐crystalline material, with aTmof 68 °C, which is ~10 °C higher than poly(ε‐caprolactone) derived from the seven‐membered lactone. Mechanical testing showed that P7HHp is a hard and tough plastic, with elongation at break >670%. P7HHp‐based polyesters with higherTmvalues have been achieved through stereoselective copolymerization of 7‐HL with an eight‐membered cyclic diester, racemic dimethyl diolide (rac‐8DLMe), known to lead to highTmpoly(3‐hydroxyburtyrate) (P3HB). Notably, catalyst's strong kinetic preference for polymerizingrac‐8DLMeover 7‐HL in the 1/1 comonomer mixture rendered the formation of di‐block copolymer P3HB‐b‐P7HHp, showing two crystalline domains withTm1 ~ 65 °C andTm2 ~ 160 °C. Semi‐crystalline random copolymers withTmup to 164 °C have also been obtained by adjusting copolymerization conditions. Mechanical testing showed that P3HB‐b‐P7HHp can synergistically combine the high modulus of isotactic P3HB with the high ductility of P7HHp.

     
    more » « less
  2. Abstract

    This work develops the Polyolefin Active‐Ester Exchange (PACE) process to afford well‐defined polyolefin–polyvinyl block copolymers. α‐Diimine PdII‐catalyzed olefin polymerizations were investigated through in‐depth kinetic studies in comparison to an analog to establish the critical design that facilitates catalyst activation. Simple transformations lead to a diversity of functional groups forming polyolefin macroinitiators or macro‐mediators for various subsequent controlled polymerization techniques. Preparation of block copolymers with different architectures, molecular weights, and compositions was demonstrated with ring‐opening polymerization (ROP), nitroxide‐mediated polymerization (NMP), and photoiniferter reversible addition–fragmentation chain transfer (PI‐RAFT). The significant difference in the properties of polyolefin–polyacrylamide block copolymers was harnessed to carry out polymerization‐induced self‐assembly (PISA) and study the nanostructure behaviors.

     
    more » « less
  3. Abstract

    This work develops the Polyolefin Active‐Ester Exchange (PACE) process to afford well‐defined polyolefin–polyvinyl block copolymers. α‐Diimine PdII‐catalyzed olefin polymerizations were investigated through in‐depth kinetic studies in comparison to an analog to establish the critical design that facilitates catalyst activation. Simple transformations lead to a diversity of functional groups forming polyolefin macroinitiators or macro‐mediators for various subsequent controlled polymerization techniques. Preparation of block copolymers with different architectures, molecular weights, and compositions was demonstrated with ring‐opening polymerization (ROP), nitroxide‐mediated polymerization (NMP), and photoiniferter reversible addition–fragmentation chain transfer (PI‐RAFT). The significant difference in the properties of polyolefin–polyacrylamide block copolymers was harnessed to carry out polymerization‐induced self‐assembly (PISA) and study the nanostructure behaviors.

     
    more » « less
  4. Poly( l -lactide) (PLA) is a bioderived and biodegradable polymer that has limited applications due to its hard and brittle nature. Incorporation of 1,3-trimethylene carbonate into PLA, in a block copolymer fashion, improves the mechanical properties, while retaining the biodegradability of the polymer, and broadens its range of applications. However, the preparation of 1,3-trimethylene carbonate (TMC)/ l -lactide (LA) copolymers beyond diblock and triblock structures has not been reported, with explanations focusing mostly on thermodynamic reasons that impede the copolymerization of TMC after lactide. We discuss the preparation of multiblock copolymers via the ring opening polymerization (ROP) of LA and TMC, in a step-wise addition, by a ferrocene-chelating heteroscorpionate zinc complex, {[fc(PPh 2 )(BH[(3,5-Me) 2 pz] 2 )]Zn(μ-OCH 2 Ph)} 2 ([(fc P,B )Zn(μ-OCH 2 Ph)] 2 , fc = 1,1′-ferrocenediyl, pz = pyrazole). The synthesis of up to pentablock copolymers, from various combinations of LA and TMC, was accomplished and the physical, thermal, and mechanical properties of the resulting copolymers evaluated. 
    more » « less
  5. Abstract

    Reactions of the IrVhydride [MeBDIDipp]IrH4{BDI=(Dipp)NC(Me)CH(Me)CN(Dipp); Dipp=2,6‐iPr2C6H3} with E[N(SiMe3)2]2(E=Sn, Pb) afforded the unusual dimeric dimetallotetrylenes ([MeBDIDipp]IrH)2(μ2‐E)2in good yields. Moreover, ([MeBDIDipp]IrH)2(μ2‐Ge)2was formed in situ from thermal decomposition of [MeBDIDipp]Ir(H)2Ge[N(SiMe3)2]2. These reactions are accompanied by liberation of HN(SiMe3)2and H2through the apparent cleavage of an E−N(SiMe3)2bond by Ir−H. In a reversal of this process, ([MeBDIDipp]IrH)2(μ2‐E)2reacted with excess H2to regenerate [MeBDIDipp]IrH4. Varying the concentrations of reactants led to formation of the trimeric ([MeBDIDipp]IrH2)3(μ2‐E)3. The further scope of this synthetic route was investigated with group 15 amides, and ([MeBDIDipp]IrH)2(μ2‐Bi)2was prepared by the reaction of [MeBDIDipp]IrH4with Bi(NMe2)3or Bi(OtBu)3to afford the first example of a “naked” two‐coordinate Bi atom bound exclusively to transition metals. A viable mechanism that accounts for the formation of these products is proposed. Computational investigations of the Ir2E2(E=Sn, Pb) compounds characterized them as open‐shell singlets with confined nonbonding lone pairs at the E centers. In contrast, Ir2Bi2is characterized as having a closed‐shell singlet ground state.

     
    more » « less