skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integration of element specific persistent homology and machine learning for protein‐ligand binding affinity prediction
Abstract Protein‐ligand binding is a fundamental biological process that is paramount to many other biological processes, such as signal transduction, metabolic pathways, enzyme construction, cell secretion, and gene expression. Accurate prediction of protein‐ligand binding affinities is vital to rational drug design and the understanding of protein‐ligand binding and binding induced function. Existing binding affinity prediction methods are inundated with geometric detail and involve excessively high dimensions, which undermines their predictive power for massive binding data. Topology provides the ultimate level of abstraction and thus incurs too much reduction in geometric information. Persistent homology embeds geometric information into topological invariants and bridges the gap between complex geometry and abstract topology. However, it oversimplifies biological information. This work introduces element specific persistent homology (ESPH) or multicomponent persistent homology to retain crucial biological information during topological simplification. The combination of ESPH and machine learning gives rise to a powerful paradigm for macromolecular analysis. Tests on 2 large data sets indicate that the proposed topology‐based machine‐learning paradigm outperforms other existing methods in protein‐ligand binding affinity predictions. ESPH reveals protein‐ligand binding mechanism that can not be attained from other conventional techniques. The present approach reveals that protein‐ligand hydrophobic interactions are extended to 40Å  away from the binding site, which has a significant ramification to drug and protein design.  more » « less
Award ID(s):
1721024
PAR ID:
10236270
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Biomedical Engineering
Volume:
34
Issue:
2
ISSN:
2040-7939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Artificial intelligence-assisted drug design is revolutionizing the pharmaceutical industry. Effective molecular features are crucial for accurate machine learning predictions, and advanced mathematics plays a key role in designing these features. Persistent homology theory, which equips topological invariants with persistence, provides valuable insights into molecular structures. The standard homology theory is based on a differential rule for the boundary operator that satisfies [Formula: see text] = 0. Our recent work has extended this rule by employing Mayer homology with generalized differentials that satisfy [Formula: see text] = 0 for [Formula: see text] 2, leading to the development of persistent Mayer homology (PMH) theory and richer topological information across various scales. In this study, we utilize PMH to create a novel multiscale topological vectorization for molecular representation, offering valuable tools for descriptive and predictive analyses in molecular data and machine learning prediction. Specifically, benchmark tests on established protein-ligand datasets, including PDBbind-v2007, PDBbind-v2013, and PDBbind-v2016, demonstrate the superior performance of our Mayer homology models in predicting protein-ligand binding affinities. 
    more » « less
  2. Recently, molecular fingerprints extracted from three-dimensional (3D) structures using advanced mathematics, such as algebraic topology, differential geometry, and graph theory have been paired with efficient machine learning, especially deep learning algorithms to outperform other methods in drug discovery applications and competitions. This raises the question of whether classical 2D fingerprints are still valuable in computer-aided drug discovery. This work considers 23 datasets associated with four typical problems, namely protein–ligand binding, toxicity, solubility and partition coefficient to assess the performance of eight 2D fingerprints. Advanced machine learning algorithms including random forest, gradient boosted decision tree, single-task deep neural network and multitask deep neural network are employed to construct efficient 2D-fingerprint based models. Additionally, appropriate consensus models are built to further enhance the performance of 2D-fingerprint-based methods. It is demonstrated that 2D-fingerprint-based models perform as well as the state-of-the-art 3D structure-based models for the predictions of toxicity, solubility, partition coefficient and protein–ligand binding affinity based on only ligand information. However, 3D structure-based models outperform 2D fingerprint-based methods in complex-based protein–ligand binding affinity predictions. 
    more » « less
  3. Abstract Accurate prediction of ligand-receptor binding affinity is crucial in structure-based drug design, significantly impacting the development of effective drugs. Recent advances in machine learning (ML)–based scoring functions have improved these predictions, yet challenges remain in modeling complex molecular interactions. This study introduces the AGL-EAT-Score, a scoring function that integrates extended atom-type multiscale weighted colored subgraphs with algebraic graph theory. This approach leverages the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices to capture high-level details of specific atom pairwise interactions. Evaluated against benchmark datasets such as CASF-2016, CASF-2013, and the Cathepsin S dataset, the AGL-EAT-Score demonstrates notable accuracy, outperforming existing traditional and ML-based methods. The model’s strength lies in its comprehensive similarity analysis, examining protein sequence, ligand structure, and binding site similarities, thus ensuring minimal bias and over-representation in the training sets. The use of extended atom types in graph coloring enhances the model’s capability to capture the intricacies of protein-ligand interactions. The AGL-EAT-Score marks a significant advancement in drug design, offering a tool that could potentially refine and accelerate the drug discovery process. Scientific Contribution The AGL-EAT-Score presents an algebraic graph-based framework that predicts ligand-receptor binding affinity by constructing multiscale weighted colored subgraphs from the 3D structure of protein-ligand complexes. It improves prediction accuracy by modeling interactions between extended atom types, addressing challenges like dataset bias and over-representation. Benchmark evaluations demonstrate that AGL-EAT-Score outperforms existing methods, offering a robust and systematic tool for structure-based drug design. 
    more » « less
  4. ABSTRACT Predicting the structure of ligands bound to proteins is a foundational problem in modern biotechnology and drug discovery, yet little is known about how to combine the predictions of protein‐ligand structure (poses) produced by the latest deep learning methods to identify the best poses and how to accurately estimate the binding affinity between a protein target and a list of ligand candidates. Further, a blind benchmarking and assessment of protein‐ligand structure and binding affinity prediction is necessary to ensure it generalizes well to new settings. Towards this end, we introduceMULTICOM_ligand, a deep learning‐based protein‐ligand structure and binding affinity prediction ensemble featuring structural consensus ranking for unsupervised pose ranking and a new deep generative flow matching model for joint structure and binding affinity prediction. Notably,MULTICOM_ligand ranked among the top‐5 ligand prediction methods in both protein‐ligand structure prediction and binding affinity prediction in the 16th Critical Assessment of Techniques for Structure Prediction (CASP16), demonstrating its efficacy and utility for real‐world drug discovery efforts. The source code for MULTICOM_ligand is freely available on GitHub. 
    more » « less
  5. Abstract New drug production, from target identification to marketing approval, takes over 12 years and can cost around $2.6 billion. Furthermore, the COVID-19 pandemic has unveiled the urgent need for more powerful computational methods for drug discovery. Here, we review the computational approaches to predicting protein–ligand interactions in the context of drug discovery, focusing on methods using artificial intelligence (AI). We begin with a brief introduction to proteins (targets), ligands (e.g. drugs) and their interactions for nonexperts. Next, we review databases that are commonly used in the domain of protein–ligand interactions. Finally, we survey and analyze the machine learning (ML) approaches implemented to predict protein–ligand binding sites, ligand-binding affinity and binding pose (conformation) including both classical ML algorithms and recent deep learning methods. After exploring the correlation between these three aspects of protein–ligand interaction, it has been proposed that they should be studied in unison. We anticipate that our review will aid exploration and development of more accurate ML-based prediction strategies for studying protein–ligand interactions. 
    more » « less