skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on March 1, 2026

Title: Mayer-Homology Learning Prediction of Protein-Ligand Binding Affinities
Artificial intelligence-assisted drug design is revolutionizing the pharmaceutical industry. Effective molecular features are crucial for accurate machine learning predictions, and advanced mathematics plays a key role in designing these features. Persistent homology theory, which equips topological invariants with persistence, provides valuable insights into molecular structures. The standard homology theory is based on a differential rule for the boundary operator that satisfies [Formula: see text] = 0. Our recent work has extended this rule by employing Mayer homology with generalized differentials that satisfy [Formula: see text] = 0 for [Formula: see text] 2, leading to the development of persistent Mayer homology (PMH) theory and richer topological information across various scales. In this study, we utilize PMH to create a novel multiscale topological vectorization for molecular representation, offering valuable tools for descriptive and predictive analyses in molecular data and machine learning prediction. Specifically, benchmark tests on established protein-ligand datasets, including PDBbind-v2007, PDBbind-v2013, and PDBbind-v2016, demonstrate the superior performance of our Mayer homology models in predicting protein-ligand binding affinities.  more » « less
Award ID(s):
2052983
PAR ID:
10616118
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of Computational Biophysics and Chemistry
Date Published:
Journal Name:
Journal of Computational Biophysics and Chemistry
Volume:
24
Issue:
02
ISSN:
2737-4165
Page Range / eLocation ID:
253 to 266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Protein‐ligand binding is a fundamental biological process that is paramount to many other biological processes, such as signal transduction, metabolic pathways, enzyme construction, cell secretion, and gene expression. Accurate prediction of protein‐ligand binding affinities is vital to rational drug design and the understanding of protein‐ligand binding and binding induced function. Existing binding affinity prediction methods are inundated with geometric detail and involve excessively high dimensions, which undermines their predictive power for massive binding data. Topology provides the ultimate level of abstraction and thus incurs too much reduction in geometric information. Persistent homology embeds geometric information into topological invariants and bridges the gap between complex geometry and abstract topology. However, it oversimplifies biological information. This work introduces element specific persistent homology (ESPH) or multicomponent persistent homology to retain crucial biological information during topological simplification. The combination of ESPH and machine learning gives rise to a powerful paradigm for macromolecular analysis. Tests on 2 large data sets indicate that the proposed topology‐based machine‐learning paradigm outperforms other existing methods in protein‐ligand binding affinity predictions. ESPH reveals protein‐ligand binding mechanism that can not be attained from other conventional techniques. The present approach reveals that protein‐ligand hydrophobic interactions are extended to 40Å  away from the binding site, which has a significant ramification to drug and protein design. 
    more » « less
  2. A homology class [Formula: see text] of a complex flag variety [Formula: see text] is called a line degree if the moduli space [Formula: see text] of 0-pointed stable maps to X of degree d is also a flag variety [Formula: see text]. We prove a quantum equals classical formula stating that any n-pointed (equivariant, [Formula: see text]-theoretic, genus zero) Gromov–Witten invariant of line degree on X is equal to a classical intersection number computed on the flag variety [Formula: see text]. We also prove an n-pointed analogue of the Peterson comparison formula stating that these invariants coincide with Gromov–Witten invariants of the variety of complete flags [Formula: see text]. Our formulas make it straightforward to compute the big quantum [Formula: see text]-theory ring [Formula: see text] modulo the ideal [Formula: see text] generated by degrees d larger than line degrees. 
    more » « less
  3. This paper addresses the following question: given a topological quantum field theory on [Formula: see text] built from an action functional, when is it possible to globalize the theory so that it makes sense on an arbitrary smooth oriented n-manifold? We study a broad class of topological field theories — those of AKSZ type — and obtain an explicit condition for the vanishing of the framing anomaly, i.e. the obstruction to performing this globalization procedure. We also interpret our results in terms of identifying the observables as an algebra over the framed little n-disks operad. Our analysis uses the BV formalism for perturbative field theory and the notion of factorization homology. 
    more » « less
  4. Locally trivial bundles of [Formula: see text]-algebras with fiber [Formula: see text] for a strongly self-absorbing [Formula: see text]-algebra [Formula: see text] over a finite CW-complex [Formula: see text] form a group [Formula: see text] that is the first group of a cohomology theory [Formula: see text]. In this paper, we compute these groups by expressing them in terms of ordinary cohomology and connective [Formula: see text]-theory. To compare the [Formula: see text]-algebraic version of [Formula: see text] with its classical counterpart we also develop a uniqueness result for the unit spectrum of complex periodic topological [Formula: see text]-theory. 
    more » « less
  5. Abstract Recently, persistent homology has had tremendous success in biomolecular data analysis. It works by examining the topological relationship or connectivity of a group of atoms in a molecule at a variety of scales, then rendering a family of topological representations of the molecule. However, persistent homology is rarely employed for the analysis of atomic properties, such as biomolecular flexibility analysis or B-factor prediction. This work introduces atom-specific persistent homology to provide a local atomic level representation of a molecule via a global topological tool. This is achieved through the construction of a pair of conjugated sets of atoms and corresponding conjugated simplicial complexes, as well as conjugated topological spaces. The difference between the topological invariants of the pair of conjugated sets is measured by Bottleneck and Wasserstein metrics and leads to an atom-specific topological representation of individual atomic properties in a molecule. Atom-specific topological features are integrated with various machine learning algorithms, including gradient boosting trees and convolutional neural network for protein thermal fluctuation analysis and B-factor prediction. Extensive numerical results indicate the proposed method provides a powerful topological tool for analyzing and predicting localized information in complex macromolecules. 
    more » « less