skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast Optimal Circular Clustering and Applications on Round Genomes
Round genomes are found in bacteria, plant chloroplasts, and mitochondria. Genetic or epigenetic marks can present biologically interesting clusters along a circular genome. The circular data clustering problem groups N points on a circle into K clusters to minimize the within-cluster sum of squared distances. Repeatedly applying the K-means algorithm takes quadratic time, impractical for large circular datasets. To overcome this issue, we developed a fast, reproducible, and optimal circular clustering (FOCC) algorithm of worst-case O(KN log^2 N) time. The core is a fast optimal framed clustering algorithm, which we designed by integrating two divide-and-conquer and one bracket dynamic programming strategies. The algorithm is optimal based on a property of monotonic increasing cluster borders over frames on linearized data. On clustering 50,000 circular data points, FOCC outruns brute-force or heuristic circular clustering by three orders of magnitude. We produced clusters of CpG sites and genes along three round genomes, exhibiting higher quality than heuristic clustering. More broadly, the presented subquadratic-time algorithms offer the fastest known solution to not only framed and circular clustering, but also angular, periodical, and looped clustering. We implemented these algorithms in the R package OptCirClust (https://CRAN.R-project.org/package=OptCirClust)  more » « less
Award ID(s):
1661331
PAR ID:
10236465
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE/ACM Transactions on Computational Biology and Bioinformatics
ISSN:
1545-5963
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bojańczyk, Mikołaj; Merelli, Emanuela; Woodruff, David P (Ed.)
    Given n points in 𝓁_p^d, we consider the problem of partitioning points into k clusters with associated centers. The cost of a clustering is the sum of p-th powers of distances of points to their cluster centers. For p ∈ [1,2], we design sketches of size poly(log(nd),k,1/ε) such that the cost of the optimal clustering can be estimated to within factor 1+ε, despite the fact that the compressed representation does not contain enough information to recover the cluster centers or the partition into clusters. This leads to a streaming algorithm for estimating the clustering cost with space poly(log(nd),k,1/ε). We also obtain a distributed memory algorithm, where the n points are arbitrarily partitioned amongst m machines, each of which sends information to a central party who then computes an approximation of the clustering cost. Prior to this work, no such streaming or distributed-memory algorithm was known with sublinear dependence on d for p ∈ [1,2). 
    more » « less
  2. Given a data set of size n in d'-dimensional Euclidean space, the k-means problem asks for a set of k points (called centers) such that the sum of the l_2^2-distances between the data points and the set of centers is minimized. Previous work on this problem in the local differential privacy setting shows how to achieve multiplicative approximation factors arbitrarily close to optimal, but suffers high additive error. The additive error has also been seen to be an issue in implementations of differentially private k-means clustering algorithms in both the central and local settings. In this work, we introduce a new locally private k-means clustering algorithm that achieves near-optimal additive error whilst retaining constant multiplicative approximation factors and round complexity. Concretely, given any c>sqrt(2), our algorithm achieves O(k^(1 + O(1/(2c^2-1))) * sqrt(d' n) * log d' * poly log n) additive error with an O(c^2) multiplicative approximation factor. 
    more » « less
  3. We provide a new bi-criteria O(log2k) competitive algorithm for explainable k-means clustering. Explainable k-means was recently introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). It is described by an easy to interpret and understand (threshold) decision tree or diagram. The cost of the explainable k-means clustering equals to the sum of costs of its clusters; and the cost of each cluster equals the sum of squared distances from the points in the cluster to the center of that cluster. The best non bi-criteria algorithm for explainable clustering O(k) competitive, and this bound is tight. Our randomized bi-criteria algorithm constructs a threshold decision tree that partitions the data set into (1+δ)k clusters (where δ∈(0,1) is a parameter of the algorithm). The cost of this clustering is at most O(1/δ⋅log2k) times the cost of the optimal unconstrained k-means clustering. We show that this bound is almost optimal. 
    more » « less
  4. Clustering plays a crucial role in computer science, facilitating data analysis and problem-solving across numerous fields. By partitioning large datasets into meaningful groups, clustering reveals hidden structures and relationships within the data, aiding tasks such as unsupervised learning, classification, anomaly detection, and recommendation systems. Particularly in relational databases, where data is distributed across multiple tables, efficient clustering is essential yet challenging due to the computational complexity of joining tables. This paper addresses this challenge by introducing efficient algorithms for k-median and k-means clustering on relational data without the need for pre-computing the join query results. For the relational k-median clustering, we propose the first efficient relative approximation algorithm. For the relational k-means clustering, our algorithm significantly improves both the approximation factor and the running time of the known relational k-means clustering algorithms, which suffer either from large constant approximation factors, or expensive running time. Given a join query q and a database instance D of O(N) tuples, for both k-median and k-means clustering on the results of q on D, we propose randomized (1+ε)γ-approximation algorithms that run in roughly O(k2Nfhw)+T_γ(k2) time, where ε ∈ (0,1) is a constant parameter decided by the user, \fhw is the fractional hyper-tree width of Q, while γ and T_γ(x) represent the approximation factor and the running time, respectively, of a traditional clustering algorithm in the standard computational setting over x points. 
    more » « less
  5. Clustering is a fundamental unsupervised learning problem where a data-set is partitioned into clusters that consist of nearby points in a metric space. A recent variant, fair clustering, associates a color with each point representing its group membership and requires that each color has (approximately) equal representation in each cluster to satisfy group fairness. In this model, the cost of the clustering objective increases due to enforcing fairness in the algorithm. The relative increase in the cost, the “price of fairness,” can indeed be unbounded. Therefore, in this paper we propose to treat an upper bound on the clustering objective as a constraint on the clustering problem, and to maximize equality of representation subject to it. We consider two fairness objectives: the group utilitarian objective and the group egalitarian objective, as well as the group leximin objective which generalizes the group egalitarian objective. We derive fundamental lower bounds on the approximation of the utilitarian and egalitarian objectives and introduce algorithms with provable guarantees for them. For the leximin objective we introduce an effective heuristic algorithm. We further derive impossibility results for other natural fairness objectives. We conclude with experimental results on real-world datasets that demonstrate the validity of our algorithms. 
    more » « less