- Award ID(s):
- 1661331
- NSF-PAR ID:
- 10236465
- Date Published:
- Journal Name:
- IEEE/ACM Transactions on Computational Biology and Bioinformatics
- ISSN:
- 1545-5963
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Bojańczyk, Mikołaj ; Merelli, Emanuela ; Woodruff, David P (Ed.)Given n points in 𝓁_p^d, we consider the problem of partitioning points into k clusters with associated centers. The cost of a clustering is the sum of p-th powers of distances of points to their cluster centers. For p ∈ [1,2], we design sketches of size poly(log(nd),k,1/ε) such that the cost of the optimal clustering can be estimated to within factor 1+ε, despite the fact that the compressed representation does not contain enough information to recover the cluster centers or the partition into clusters. This leads to a streaming algorithm for estimating the clustering cost with space poly(log(nd),k,1/ε). We also obtain a distributed memory algorithm, where the n points are arbitrarily partitioned amongst m machines, each of which sends information to a central party who then computes an approximation of the clustering cost. Prior to this work, no such streaming or distributed-memory algorithm was known with sublinear dependence on d for p ∈ [1,2).more » « less
-
Given a data set of size n in d'-dimensional Euclidean space, the k-means problem asks for a set of k points (called centers) such that the sum of the l_2^2-distances between the data points and the set of centers is minimized. Previous work on this problem in the local differential privacy setting shows how to achieve multiplicative approximation factors arbitrarily close to optimal, but suffers high additive error. The additive error has also been seen to be an issue in implementations of differentially private k-means clustering algorithms in both the central and local settings. In this work, we introduce a new locally private k-means clustering algorithm that achieves near-optimal additive error whilst retaining constant multiplicative approximation factors and round complexity. Concretely, given any c>sqrt(2), our algorithm achieves O(k^(1 + O(1/(2c^2-1))) * sqrt(d' n) * log d' * poly log n) additive error with an O(c^2) multiplicative approximation factor.more » « less
-
We provide a new bi-criteria O(log2k) competitive algorithm for explainable k-means clustering. Explainable k-means was recently introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). It is described by an easy to interpret and understand (threshold) decision tree or diagram. The cost of the explainable k-means clustering equals to the sum of costs of its clusters; and the cost of each cluster equals the sum of squared distances from the points in the cluster to the center of that cluster. The best non bi-criteria algorithm for explainable clustering O(k) competitive, and this bound is tight. Our randomized bi-criteria algorithm constructs a threshold decision tree that partitions the data set into (1+δ)k clusters (where δ∈(0,1) is a parameter of the algorithm). The cost of this clustering is at most O(1/δ⋅log2k) times the cost of the optimal unconstrained k-means clustering. We show that this bound is almost optimal.more » « less
-
Motivated by applications to classification problems on metric data, we study Weighted Metric Clustering problem: given a metric d over n points and a k x k symmetric matrix A with non-negative entries, the goal is to find a k-partition of these points into clusters C1,...,Ck, while minimizing the sum of A[i,j] * d(u,v) over all pairs of clusters Ci and Cj and all pairs of points u from Ci and v from Cj. Specific choices of A lead to Weighted Metric Clustering capturing well-studied graph partitioning problems in metric spaces, such as Min-Uncut, Min-k-Sum, Min-k-Cut, and more.Our main result is that Weighted Metric Clustering admits a polynomial-time approximation scheme (PTAS). Our algorithm handles all the above problems using the Sherali-Adams linear programming relaxation. This subsumes several prior works, unifies many of the techniques for various metric clustering objectives, and yields a PTAS for several new problems, including metric clustering on manifolds and a new family of hierarchical clustering objectives. Our experiments on the hierarchical clustering objective show that it better captures the ground-truth structural information compared to the popular Dasgupta's objective.
-
Abstract In scientific data analysis, clusters identified computationally often substantiate existing hypotheses or motivate new ones. Yet the combinatorial nature of the clustering result, which is a partition rather than a set of parameters or a function, blurs notions of mean, and variance. This intrinsic difficulty hinders the development of methods to improve clustering by aggregation or to assess the uncertainty of clusters generated. We overcome that barrier by aligning clusters via optimal transport. Equipped with this technique, we propose a new algorithm to enhance clustering by any baseline method using bootstrap samples. Cluster alignment enables us to quantify variation in the clustering result at the levels of both overall partitions and individual clusters. Set relationships between clusters such as one‐to‐one match, split, and merge can be revealed. A covering point set for each cluster, a concept kin to the confidence interval, is proposed. The tools we have developed here will help address the crucial question of whether any cluster is an intrinsic or spurious pattern. Experimental results on both simulated and real data sets are provided. The corresponding R package OTclust is available on CRAN.