Abstract Hydrogels hold much promise for 3D printing of functional living materials; however, challenges remain in tailoring mechanical robustness as well as biological performance. In addressing this challenge, the modular synthesis of functional hydrogels from 3‐arm diblock copolypeptide stars composed of an inner poly(l‐glutamate) domain and outer poly(l‐tyrosine) or poly(l‐valine) blocks is described. Physical crosslinking due to ß‐sheet assembly of these star block copolymers gives mechanical stability during extrusion printing and the selective incorporation of methacrylate units allows for subsequent photocrosslinking to occur under biocompatible conditions. This permits direct ink writing (DIW) printing of bacteria‐based mixtures leading to 3D objects with high fidelity and excellent bacterial viability. The tunable stiffness of different copolypeptide networks enables control over proliferation and colony formation for embeddedEscherichia colibacteria as demonstrated via isopropyl ß‐d‐1‐thiogalactopyranoside (IPTG) induction of green fluorescent protein (GFP) expression. This translation of molecular structure to network properties highlights the versatility of these polypeptide hydrogel systems with the combination of writable structures and biological activity illustrating the future potential of these 3D‐printed biocomposites.
more »
« less
An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic
Abstract The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes.
more »
« less
- Award ID(s):
- 1757371
- PAR ID:
- 10236547
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 60
- Issue:
- 18
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 10186-10193
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Despite the impressive performance of recent marine robots, many of their components are non‐biodegradable or even toxic and may negatively impact sensitive ecosystems. To overcome these limitations, biologically‐sourced hydrogels are a candidate material for marine robotics. Recent advances in embedded 3D printing have expanded the design freedom of hydrogel additive manufacturing. However, 3D printing small‐scale hydrogel‐based actuators remains challenging. In this study, Free form reversible embedding of suspended hydrogels (FRESH) printing is applied to fabricate small‐scale biologically‐derived, marine‐sourced hydraulic actuators by printing thin‐wall structures that are water‐tight and pressurizable. Calcium‐alginate hydrogels are used, a sustainable biomaterial sourced from brown seaweed. This process allows actuators to have complex shapes and internal cavities that are difficult to achieve with traditional fabrication techniques. Furthermore, it demonstrates that fabricated components are biodegradable, safely edible, and digestible by marine organisms. Finally, a reversible chelation‐crosslinking mechanism is implemented to dynamically modify alginate actuators' structural stiffness and morphology. This study expands the possible design space for biodegradable marine robots by improving the manufacturability of complex soft devices using biologically‐sourced materials.more » « less
-
Click chemistry reactions have become an important tool for synthesizing user-defined hydrogels consisting of poly(ethylene glycol) (PEG) and bioactive peptides for tissue engineering. However, because click crosslinking proceeds via a step-growth mechanism, multi-arm telechelic precursors are required, which has some disadvantages. Here, we report for the first time that this requirement can be circumvented to create PEG–peptide hydrogels solely from linear precursors through the use of two orthogonal click reactions, the thiol–maleimide Michael addition and thiol–norbornene click reaction. The rapid kinetics of both click reactions allowed for quick formation of norbornene-functionalized PEG–peptide block copolymers via Michael addition, which were subsequently photocrosslinked into hydrogels with a dithiol linker. Characterization and in vitro testing demonstrated that the hydrogels have highly tunable physicochemical properties and excellent cytocompatibility. In addition, stoichiometric control over the crosslinking reaction can be leveraged to leave unreacted norbornene groups in the hydrogel for subsequent hydrogel functionalization via bioorthogonal inverse-electron demand Diels–Alder click reactions with s -tetrazines. After selectively capping norbornene groups in a user-defined region with cysteine, this feature was leveraged for protein patterning. Collectively, these results demonstrate that our novel chemical strategy is a simple and versatile approach to the development of hydrogels for tissue engineering that could be useful for a variety of applications.more » « less
-
Abstract A series of glucose‐based degradable superabsorbent hydrogels with potential to tackle issues associated with sustainability, flooding, and drought has been designed and fabricated. These hydrophilic networks were constructed through integrating glucose as a primary building block –into cyclic oligomers and block polymers, which were combined into mechanically‐interlocked slide‐ring crosslinked materials. Crosslinking of slide ring α‐cyclodextrin/poly(ethylene glycol)‐type polyrotaxanes with acid‐functionalized ABA triblock copolymers comprised of mercaptopropionic acid‐functionalized poly(glucose carbonate (ethyl propargyl carbonate))‐b‐poly(ethylene glycol)‐b‐mercaptopropionic acid‐functionalized poly(glucose carbonate (ethyl propargyl carbonate)), afforded degradable superabsorbent hydrogels through establishment of chemically‐labile ester linkages, in addition to glycosidic and carbonate groups of the polymer precursors. With an emphasis on development of fundamental synthetic design strategies to achieve high‐performance superabsorbent hydrogels that could behave as robust materials, which are derived from natural components and exhibit hydrolytic degradability, effort went into optimization of the composition, structure, and topology leading to water uptake capacities >30× by mass. Investigations of composition‐structure‐topology‐morphology effects on properties as a function of variations of PEG main chain length, degree of α‐cyclodextrin coverage, and concentration of pre‐gel solution, indicated that the slide‐ring polymer and triblock copolymer networks feature high water uptake, tunable mechanical properties, and sustainability with construction from renewable natural products and in‐built degradability.more » « less
-
Abstract Electrospinning has been used to create scaffolds with tunable micro/nano architecture, stiffness, and porosity to mimic native extracellular matrix. This study investigated the effects of electrospinning parameters and hydrogel formulation (solvent and crosslinker type) on the architecture and properties of fibrous poly(ethylene glycol) (PEG) hydrogels formed from a photoclick thiol‐norbornene reaction. Fibrous hydrogels were prepared using hydrogel precursors (four‐arm PEG norbornene and multi‐thiol crosslinker), sacrificial poly(ethylene oxide) (PEO, 400 kDa), and photoinitiator (I2959) in either 2,2‐triflouroethanol (TFE) or water. Three thiol crosslinkers‐ 2,2′‐(ethylenedioxy)diethanethiol (EDT), pentaerythritol tetrakis(3mercaptopropionate) (PTMP), and PEG dithiol (PEGDT)‐ were investigated. Fibrous PEG networks with uniform fibers were produced at applied voltages of 10 or 12 kV for TFE and 16 kV for water. Fiber diameters of electrospun hydrogels were largely affected by the solvent when combined with PEO concentration and ranged from 0.5 to 3.5 mm in dry state. While the effect of crosslinker type on fiber diameter, morphology, and porosity of the fibrous hydrogel was minimal, it did modulate its shear modulus. To this end, this study provides the groundwork for selecting processing parameters to achieve desired properties of fibrous PEG thiol‐norbornene hydrogels for intended tissue engineering applications ranging from neural, cardiovascular to musculoskeletal.more » « less
An official website of the United States government
