skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Highly Active and Abundant MAB Phases Ni n+1 ZnB n ( n  = 1, 2) toward Hydrogen Evolution
  more » « less
NSF-PAR ID:
10236628
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy and Sustainability Research
Volume:
2
Issue:
9
ISSN:
2699-9412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ternary MAB phases (layered transition metal borides) have recently attracted interest due to their exfoliation potential toward MBenes (analogous to MXenes), which are predicted to have excellent Li-ion battery performance. We have achieved single-phase synthesis of two MAB phases with general composition Ni n+1 ZnB n ( n = 1, 2), the crystal structures of which contain zinc layers sandwiched between thin ( n = 1) and thick ( n = 2) Ni–B slabs. Highly stacked MAB sheets were confirmed by X-ray diffraction and high-resolution scanning electron microscopy for both materials. Exposing Ni n+1 ZnB n to diluted hydrochloric acid led to the creation of crystalline microporous structures for n = 1 and non-porous detached sheets for n = 2. Both morphologies transformed the inactive bulk materials into highly active Li-ion battery anodes with capacities of ∼90 mA h g −1 ( n = 1) and ∼70 mA h g −1 ( n = 2) at a 100 mA g −1 lithiation–delithiation rate. The XPS analysis and BET surface area measurements reveal that the increased surface area and the reversible redox reaction of oxidized nickel species are responsible for this drastic increase of the lithiation–delithiation capacity. This proof of concept opens new avenues for the development of porous MAB, MAB nanosheets, MBenes and their composites for metal-ion battery applications. 
    more » « less
  2.  
    more » « less
  3.  
    more » « less
  4. Abstract

    The application of Co2‐xRhxP nanoparticles as electrocatalysts for the hydrogen evolution reaction (HER) and overall water splitting in basic media is reported. The experimental design seeks to dilute rhodium with earth‐abundant cobalt as a means to lower the cost of the material and achieve catalytic synergism, as reported for related bimetallic phosphides. The HER activity of Co2‐xRhxP is found to be composition‐dependent, with the rhodium‐rich compositions being more active as compared to their cobalt‐rich counterparts, with overpotentials (η) at 10 mA/cm2geometricof 58.1–63.9 mV vs. 82.1–188.1 mV, respectively. In contrast, Co‐rich Co2‐xRhxP nanoparticles are active for the oxygen evolution reaction (OER) process in basic media, with η= 290 mV for x=0.25. A full water electrolysis cell was created using the most active compositions for OER and HER as the anode and cathode, respectively, generating an overall η= 390 mV. Notably, the cell became more active over a 50 h stability test, increasing by 2 mV/cm2geometricat a constant applied voltage of 1.62 V vs NHE. This enhanced activity correlates with nanoscale phase segregation of Rh in the anode. Thus, the lower overpotential achieved for Co1.75Rh0.25P relative to Co2P, and the augmented activity over time in the former, may be a consequence of restructuring of the anode driven by Rh phase‐segregation. The augmentation in activity at the anode more than compensates for small losses at the cathode.

     
    more » « less
  5. Abstract

    Transition‐metal borides (TMBs) have recently attracted attention as excellent hydrogen evolution (HER) electrocatalysts in bulk crystalline materials. Herein, we show for the first time that VB and V3B4have high electrocatalytic HER activity. Furthermore, we show that the HER activity (in 0.5 mH2SO4) increases with increasing boron chain condensation in vanadium borides: Using a −23 mV overpotential decrement derived from −0.296 mV (for VB at −10 mA cm−2current density) and −0.273 mV (for V3B4) we accurately predict the overpotential of VB2(−0.204 mV) as well as that of unstudied V2B3(−0.250 mV) and hypothetical “V5B8” (−0.227 mV). We then derived an exponential equation that predicts the overpotentials of known and hypothetical VxByphases containing at least a boron chain. These results provide a direct correlation between crystal structure and HER activity, thus paving the way for the design of even better electrocatalytic materials through structure–activity relationships.

     
    more » « less