skip to main content


Title: Origin of Hole Transport in Small Molecule Dilute Donor Solar Cells
  more » « less
Award ID(s):
1916612
NSF-PAR ID:
10236974
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy and Sustainability Research
Volume:
2
Issue:
3
ISSN:
2699-9412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neurotransmitters are small molecules involved in neuronal signaling and can also serve as stress biomarkers.1Their abnormal levels have been also proposed to be indicative of several neurological diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington disease, among others. Hence, measuring their levels is highly important for early diagnosis, therapy, and disease prognosis. In this work, we investigate facile functionalization methods to tune and enhance sensitivity of printed graphene sensors to neurotransmitters. Sensors based on direct laser scribing and screen-printed graphene ink are studied. These printing methods offer ease of prototyping and scalable fabrication at low cost.

    The effect of functionalization of laser induced graphene (LIG) by electrodeposition and solution-based deposition of TMDs (molybdenum disulfide2and tungsten disulfide) and metal nanoparticles is studied. For different processing methods, electrochemical characteristics (such as electrochemically active surface area: ECSA and heterogenous electron transfer rate: k0) are extracted and correlated to surface chemistry and defect density obtained respectively using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. These functionalization methods are observed to directly impact the sensitivity and limit of detection (LOD) of the graphene sensors for the studied neurotransmitters. For example, as compared to bare LIG, it is observed that electrodeposition of MoS2on LIG improves ECSA by 3 times and k0by 1.5 times.3Electrodeposition of MoS2also significantly reduces LOD of serotonin and dopamine in saliva, enabling detection of their physiologically relevant concentrations (in pM-nM range). In addition, chemical treatment of LIG sensors is carried out in the form of acetic acid treatment. Acetic acid treatment has been shown previously to improve C-C bonds improving the conductivity of LIG sensors.4In our work, in particular, acetic acid treatment leads to larger improvement of LOD of norepinephrine compared to MoS2electrodeposition.

    In addition, we investigate the effect of plasma treatment to tune the sensor response by modifying the defect density and chemistry. For example, we find that oxygen plasma treatment of screen-printed graphene ink greatly improves LOD of norepinephrine up to three orders of magnitude, which may be attributed to the increased defects and oxygen functional groups on the surface as evident by XPS measurements. Defects are known to play a key role in enhancing the sensitivity of 2D materials to surface interactions, and have been explored in tuning/enhancing the sensor sensitivity.5Building on our previous work,3we apply a custom machine learning-based data processing method to further improve that sensitivity and LOD, and also to automatically benchmark different molecule-material pairs.

    Future work includes expanding the plasma chemistry and conditions, studying the effect of precursor mixture in laser-induced solution-based functionalization, and understanding the interplay between molecule-material system. Work is also underway to improve the machine learning model by using nonlinear learning models such as neural networks to improve the sensor sensitivity, selectivity, and robustness.

    References

    A. J. Steckl, P. Ray, (2018), doi:10.1021/acssensors.8b00726.

    Y. Lei, D. Butler, M. C. Lucking, F. Zhang, T. Xia, K. Fujisawa, T. Granzier-Nakajima, R. Cruz-Silva, M. Endo, H. Terrones, M. Terrones, A. Ebrahimi,Sci. Adv.6, 4250–4257 (2020).

    V. Kammarchedu, D. Butler, A. Ebrahimi,Anal. Chim. Acta.1232, 340447 (2022).

    H. Yoon, J. Nah, H. Kim, S. Ko, M. Sharifuzzaman, S. C. Barman, X. Xuan, J. Kim, J. Y. Park,Sensors Actuators B Chem.311, 127866 (2020).

    T. Wu, A. Alharbi, R. Kiani, D. Shahrjerdi,Adv. Mater.31, 1–12 (2019).

     
    more » « less
  2. Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters in some locations, while other stretches of ecotone present a gradual transition where smaller, widely spaced trees are interspersed into the herbaceous marsh. Juncus roemerianus then extends landward to a high marsh patchwork of succulent halophytes (including Salicornia bigellovi, Sesuvium sp., and Batis maritima), scattered dwarf mangrove, and salt pans, followed in turn by upland vegetation that includes Pinus sp. and Serenoa repens. Field design and sample collection. We established three study sites spaced at approximately 5 km intervals along the western coastline of the central Florida peninsula. The sites consisted of the Salt Springs (28.3298°, -82.7274°), Energy Marine Center (28.2903°, -82.7278°), and Green Key (28.2530°, -82.7496°) sites on the Gulf of Mexico coastline in Pasco County, Florida, USA. At each site, we established three plot pairs, each consisting of one saltmarsh plot and one mangrove plot. Plots were 50 m^2 in size. Plots pairs within a site were separated by 230-1070 m, and the mangrove and saltmarsh plots composing a pair were 70-170 m apart. All plot pairs consisted of directly adjacent patches of mangrove forest and J. roemerianus saltmarsh, with the mangrove forests exhibiting a closed canopy and a tree architecture (height 4-6 m, crown width 1.5-3 m). Mangrove plots were located at approximately the midpoint between the seaward edge (water-mangrove interface) and landward edge (mangrove-marsh interface) of the mangrove zone. Saltmarsh plots were located 20-25 m away from any mangrove trees and into the J. roemerianus zone (i.e., landward from the mangrove-marsh interface). Plot pairs were coarsely similar in geomorphic setting, as all were located on the Gulf of Mexico coastline, rather than within major sheltering formations like Tampa Bay, and all plot pairs fit the tide-dominated domain of the Woodroffe classification (Woodroffe, 2002, "Coasts: Form, Process and Evolution", Cambridge University Press), given their conspicuous semi-diurnal tides. There was nevertheless some geomorphic variation, as some plot pairs were directly open to the Gulf of Mexico while others sat behind keys and spits or along small tidal creeks. Our use of a plot-pair approach is intended to control for this geomorphic variation. Plot center elevations (cm above mean sea level, NAVD 88) were estimated by overlaying the plot locations determined with a global positioning system (Garmin GPS 60, Olathe, KS, USA) on a LiDAR-derived bare-earth digital elevation model (Dewberry, Inc., 2019). The digital elevation model had a vertical accuracy of ± 10 cm (95 % CI) and a horizontal accuracy of ± 116 cm (95 % CI). Soil samples were collected via coring at low tide in June 2011. From each plot, we collected a composite soil sample consisting of three discrete 5.1 cm diameter soil cores taken at equidistant points to 7.6 cm depth. Cores were taken by tapping a sleeve into the soil until its top was flush with the soil surface, sliding a hand under the core, and lifting it up. Cores were then capped and transferred on ice to our laboratory at the University of South Florida (Tampa, Florida, USA), where they were combined in plastic zipper bags, and homogenized by hand into plot-level composite samples on the day they were collected. A damp soil subsample was immediately taken from each composite sample to initiate 1 y incubations for determination of active C and N (see below). The remainder of each composite sample was then placed in a drying oven (60 °C) for 1 week with frequent mixing of the soil to prevent aggregation and liberate water. Organic wetland soils are sometimes dried at 70 °C, however high drying temperatures can volatilize non-water liquids and oxidize and decompose organic matter, so 50 °C is also a common drying temperature for organic soils (Gardner 1986, "Methods of Soil Analysis: Part 1", Soil Science Society of America); we accordingly chose 60 °C as a compromise between sufficient water removal and avoidance of non-water mass loss. Bulk density was determined as soil dry mass per core volume (adding back the dry mass equivalent of the damp subsample removed prior to drying). Dried subsamples were obtained for determination of soil organic matter (SOM), mineral texture composition, and extractable and total carbon (C) and nitrogen (N) within the following week. Sample analyses. A dried subsample was apportioned from each composite sample to determine SOM as mass loss on ignition at 550 °C for 4 h. After organic matter was removed from soil via ignition, mineral particle size composition was determined using a combination of wet sieving and density separation in 49 mM (3 %) sodium hexametaphosphate ((NaPO_3)_6) following procedures in Kettler et al. (2001, Soil Science Society of America Journal 65, 849-852). The percentage of dry soil mass composed of silt and clay particles (hereafter, fines) was calculated as the mass lost from dispersed mineral soil after sieving (0.053 mm mesh sieve). Fines could have been slightly underestimated if any clay particles were burned off during the preceding ignition of soil. An additional subsample was taken from each composite sample to determine extractable N and organic C concentrations via 0.5 M potassium sulfate (K_2SO_4) extractions. We combined soil and extractant (ratio of 1 g dry soil:5 mL extractant) in plastic bottles, reciprocally shook the slurry for 1 h at 120 rpm, and then gravity filtered it through Fisher G6 (1.6 μm pore size) glass fiber filters, followed by colorimetric detection of nitrite (NO_2^-) + nitrate (NO_3^-) and ammonium (NH_4^+) in the filtrate (Hood Nowotny et al., 2010,Soil Science Society of America Journal 74, 1018-1027) using a microplate spectrophotometer (Biotek Epoch, Winooski, VT, USA). Filtrate was also analyzed for dissolved organic C (referred to hereafter as extractable organic C) and total dissolved N via combustion and oxidation followed by detection of the evolved CO_2 and N oxide gases on a Formacs HT TOC/TN analyzer (Skalar, Breda, The Netherlands). Extractable organic N was then computed as total dissolved N in filtrate minus extractable mineral N (itself the sum of extractable NH_4-N and NO_2-N + NO_3-N). We determined soil total C and N from dried, milled subsamples subjected to elemental analysis (ECS 4010, Costech, Inc., Valencia, CA, USA) at the University of South Florida Stable Isotope Laboratory. Median concentration of inorganic C in unvegetated surface soil at our sites is 0.5 % of soil mass (Anderson, 2019, Univ. of South Florida M.S. thesis via methods in Wang et al., 2011, Environmental Monitoring and Assessment 174, 241-257). Inorganic C concentrations are likely even lower in our samples from under vegetation, where organic matter would dilute the contribution of inorganic C to soil mass. Nevertheless, the presence of a small inorganic C pool in our soils may be counted in the total C values we report. Extractable organic C is necessarily of organic C origin given the method (sparging with HCl) used in detection. Active C and N represent the fractions of organic C and N that are mineralizable by soil microorganisms under aerobic conditions in long-term soil incubations. To quantify active C and N, 60 g of field-moist soil were apportioned from each composite sample, placed in a filtration apparatus, and incubated in the dark at 25 °C and field capacity moisture for 365 d (as in Lewis et al., 2014, Ecosphere 5, art59). Moisture levels were maintained by frequently weighing incubated soil and wetting them up to target mass. Daily CO_2 flux was quantified on 29 occasions at 0.5-3 week intervals during the incubation period (with shorter intervals earlier in the incubation), and these per day flux rates were integrated over the 365 d period to compute an estimate of active C. Observations of per day flux were made by sealing samples overnight in airtight chambers fitted with septa and quantifying headspace CO_2 accumulation by injecting headspace samples (obtained through the septa via needle and syringe) into an infrared gas analyzer (PP Systems EGM 4, Amesbury, MA, USA). To estimate active N, each incubated sample was leached with a C and N free, 35 psu solution containing micronutrients (Nadelhoffer, 1990, Soil Science Society of America Journal 54, 411-415) on 19 occasions at increasing 1-6 week intervals during the 365 d incubation, and then extracted in 0.5 M K_2SO_4 at the end of the incubation in order to remove any residual mineral N. Active N was then quantified as the total mass of mineral N leached and extracted. Mineral N in leached and extracted solutions was detected as NH_4-N and NO_2-N + NO_3-N via colorimetry as above. This incubation technique precludes new C and N inputs and persistently leaches mineral N, forcing microorganisms to meet demand by mineralizing existing pools, and thereby directly assays the potential activity of soil organic C and N pools present at the time of soil sampling. Because this analysis commences with disrupting soil physical structure, it is biased toward higher estimates of active fractions. Calculations. Non-mobile C and N fractions were computed as total C and N concentrations minus the extractable and active fractions of each element. This data package reports surface-soil constituents (moisture, fines, SOM, and C and N pools and fractions) in both gravimetric units (mass constituent / mass soil) and areal units (mass constituent / soil surface area integrated through 7.6 cm soil depth, the depth of sampling). Areal concentrations were computed as X × D × 7.6, where X is the gravimetric concentration of a soil constituent, D is soil bulk density (g dry soil / cm^3), and 7.6 is the sampling depth in cm. 
    more » « less
  3. Abstract

    Efficient doping of polymer semiconductors is required for high conductivity and efficient thermoelectric performance. Lewis acids, e.g., B(C6F5)3, have been widely employed as dopants, but the mechanism is not fully understood. 1:1 “Wheland type” or zwitterionic complexes of B(C6F5)3are created with small conjugated molecules 3,6‐bis(5‐(7‐(5‐methylthiophen‐2‐yl)‐2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)thiophen‐2‐yl)‐2,5‐dioctyl‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione [oligo_DPP(EDOT)2] and 3,6‐bis(5''‐methyl‐[2,2':5',2''‐terthiophen]‐5‐yl)‐2,5‐dioctyl‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione [oligo_DPP(Th)2]. Using a wide variety of experimental and computational approaches, the doping ability of these Wheland Complexes with B(C6F5)3are characterized for five novel diketopyrrolopyrrole‐ethylenedioxythiophene (DPP‐EDOT)‐based conjugated polymers. The electrical properties are a strong function of the specific conjugated molecule constituting the adduct, rather than acidic protons generated via hydrolysis of B(C6F5)3, serving as the oxidant. It is highly probable that certain repeat units/segments form adduct structures inp‐type conjugated polymers which act as intermediates for conjugated polymer doping. Electronic and optical properties are consistent with the increase in hole‐donating ability of polymers with their cumulative donor strengths. The doped film of polymer (DPP(EDOT)2‐(EDOT)2) exhibits exceptionally good thermal and air‐storage stability. The highest conductivities, ≈300 and ≈200 S cm−1, are achieved for DPP(EDOT)2‐(EDOT)2doped with B(C6F5)3and its Wheland complexes.

     
    more » « less
  4. Abstract

    The nanoscale interpenetrating electron donor–acceptor network in organic bulk heterojunction (BHJ) solar cells results in efficient charge photogeneration but creates complex 3D pathways for charge transport. At present, little is known about the extent to which out‐of‐plane charge flow relies on lateral electrical connectivity. In this work, a procedure, based on conductive atomic force microscopy, is introduced to quantify lateral current spreading during out‐of‐plane charge transport. Using the developed approach, the dependence of lateral spreading on BHJ phase separation, composition, and molecule type (small molecule vs polymer) is studied. In the small‐molecule BHJ, 7,7′‐(4,4‐bis(2‐ethylhexyl)‐4H‐silolo[3,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)bis(6‐fluoro‐4‐(5′‐hexyl‐[2,2′‐bithiophen]‐5‐yl)benzo[c]‐[1,2,5]thiadiazole):(6,6)‐Phenyl‐C71‐butyric acid methyl ester (p‐DTS(FBTTh2)2:PC71BM), an increase is observed in lateral hole current spreading as the population of donor crystallites, bearing an edge‐on molecular orientation, is increased. When integrated into BHJs, the polymer donor poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) leads to greater lateral hole current spreading and more spatially uniform charge transport than the small‐molecule donor, owing to in‐plane charge transport along the polymer backbone. Through the newly introduced electrical characterization scheme, these experiments bring to light the role of lateral electrical connectivity in assisting charge navigation across BHJs.

     
    more » « less
  5. Key points

    Association of plasma membrane BKCachannels with BK‐β subunits shapes their biophysical properties and physiological roles; however, functional modulation of the mitochondrial BKCachannel (mitoBKCa) by BK‐β subunits is not established.

    MitoBKCa‐α and the regulatory BK‐β1 subunit associate in mouse cardiac mitochondria.

    A large fraction of mitoBKCadisplay properties similar to that of plasma membrane BKCawhen associated with BK‐β1 (left‐shifted voltage dependence of activation,V1/2 = −55 mV, 12 µmmatrix Ca2+).

    In BK‐β1 knockout mice, cardiac mitoBKCadisplayed a lowPoand a depolarizedV1/2of activation (+47 mV at 12 µmmatrix Ca2+)

    Co‐expression of BKCawith the BK‐β1 subunit in HeLa cells doubled the density of BKCain mitochondria.

    The present study supports the view that the cardiac mitoBKCachannel is functionally modulated by the BK‐β1 subunit; proper targeting and activation of mitoBKCashapes mitochondrial Ca2+handling.

    Abstract

    Association of the plasma membrane BKCachannel with auxiliary BK‐β1–4 subunits profoundly affects the regulatory mechanisms and physiological processes in which this channel participates. However, functional association of mitochondrial BK (mitoBKCa) with regulatory subunits is unknown. We report that mitoBKCafunctionally associates with its regulatory subunit BK‐β1 in adult rodent cardiomyocytes. Cardiac mitoBKCais a calcium‐ and voltage‐activated channel that is sensitive to paxilline with a large conductance for K+of 300 pS. Additionally, mitoBKCadisplays a high open probability (Po) and voltage half‐activation (V1/2 = −55 mV,n = 7) resembling that of plasma membrane BKCawhen associated with its regulatory BK‐β1 subunit. Immunochemistry assays demonstrated an interaction between mitochondrial BKCa‐α and its BK‐β1 subunit. Mitochondria from the BK‐β1 knockout (KO) mice showed sparse mitoBKCacurrents (five patches with mitoBKCaactivity out of 28 total patches fromn = 5 different hearts), displaying a depolarizedV1/2of activation (+47 mV in 12 µmmatrix Ca2+). The reduced activity of mitoBKCawas accompanied by a high expression of BKCatranscript in the BK‐β1 KO, suggesting a lower abundance of mitoBKCachannels in this genotype. Accordingly, BK‐β1subunit increased the localization of BKDEC (i.e. the splice variant of BKCathat specifically targets mitochondria) into mitochondria by two‐fold. Importantly, both paxilline‐treated and BK‐β1 KO mitochondria displayed a more rapid Ca2+overload, featuring an early opening of the mitochondrial transition pore. We provide strong evidence that mitoBKCaassociates with its regulatory BK‐β1 subunit in cardiac mitochondria, ensuring proper targeting and activation of the mitoBKCachannel that helps to maintain mitochondrial Ca2+homeostasis.

     
    more » « less