skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self‐Propulsion and Shear Flow Align Active Particles in Nozzles and Channels
Active particles consume energy stored in the environment and convert it into mechanical motion. Many potential applications of these systems involve their flowing, extrusion, and deposition through channels and nozzles, such as targeted drug delivery and out‐of‐equilibrium self‐assembly. However, understanding their fundamental interactions with flow and boundaries remain incomplete. Herein, experimental and theoretical studies of hydrogen peroxide (H2O2) powered self‐propelled gold–platinum nanorods in parallel channels and nozzles are conducted. The behaviors of active (self‐propelled) and passive rods are systematically compared. It is found that most active rods self‐align with the flow streamlines in areas with high shear and exhibit rheotaxis (swimming against the flow). In contrast, passive rods continue moving unaffected until the flow rate is very high, at which point they also start showing some alignment. The experimental results are rationalized by computational modeling delineating activity and rod‐flow interactions. The obtained results provide insight into the manipulation and control of active particle flow and extrusion in complex geometries.  more » « less
Award ID(s):
1628411
PAR ID:
10237032
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Intelligent Systems
Volume:
3
Issue:
2
ISSN:
2640-4567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We use coarse-grained molecular-dynamics simulations to study the motility of a 2D vesicle containing self-propelled rods, as a function of the vesicle bending rigidity and the number density, length, and activity of the enclosed rods. Above a threshold value of the rod length, distinct dynamical regimes emerge, including a dramatic enhancement of vesicle motility characterized by a highly persistent random walk. These regimes are determined by clustering of the rods within the vesicle; the maximum motility state arises when there is one long-lived polar cluster. We develop a scaling theory that predicts the dynamical regimes as a function of control parameters, and shows that feedback between activity and passive membrane forces govern the rod organization. These findings yield design principles for building self-propelled superstructures using independent active agents under deformable confinement. 
    more » « less
  2. Abstract Whereas self-propelled hard discs undergo motility-induced phase separation, self-propelled rods exhibit a variety of nonequilibrium phenomena, including clustering, collective motion, and spatio-temporal chaos. In this work, we present a theoretical framework representing active particles by continuum fields. This concept combines the simplicity of alignment-based models, enabling analytical studies, and realistic models that incorporate the shape of self-propelled objects explicitly. By varying particle shape from circular to ellipsoidal, we show how nonequilibrium stresses acting among self-propelled rods destabilize motility-induced phase separation and facilitate orientational ordering, thereby connecting the realms of scalar and vectorial active matter. Though the interaction potential is strictly apolar, both, polar and nematic order may emerge and even coexist. Accordingly, the symmetry of ordered states is a dynamical property in active matter. The presented framework may represent various systems including bacterial colonies, cytoskeletal extracts, or shaken granular media. 
    more » « less
  3. The addition of short carbon fibers to the feedstock of large-scale polymer extrusion/deposition additive manufacturing results in significant increases in mechanical properties dependent on the fiber distribution and orientation in the beads. In order to analyze those factors, a coupled computational fluid dynamics (CFD) and discrete element modeling (DEM) approach is developed to simulate the behavior of fibers in an extrusion/deposition nozzle flow after calibrations in simple shear flows. The DEM model uses bonded discrete particles to make up flexible and breakable fibers that are first calibrated to match Jeffery’s orbit and to produce interactions that are consistent with Advani-Tucker orientation tensor predictions. The DEM/CFD model is then used to simulate the processing of fiber suspensions in the variable flow and geometries present in extrusion/deposition nozzles. The computed results provide enhanced insight into the evolution of fiber orientation and distribution during extrusion/deposition as compared to existing models through individual fiber tracking over time and space on multiple parameters of interest such as orientation, flexure, and contact forces. 
    more » « less
  4. Abstract Active fluid droplets surrounded by oil can spontaneously develop circulatory flows. However, the dynamics of the surrounding oil and their influence on the active fluid remain poorly understood. To investigate interactions between the active fluid and the passive oil across their interface, kinesin-driven microtubule-based active fluid droplets were immersed in oil and compressed into a cylinder-like shape. The droplet geometry supported intradroplet circulatory flows, but the circulation was suppressed when the thickness of the oil layer surrounding the droplet decreased. Experiments with tracers and network structure analyses and continuum models based on the dynamics of self-elongating rods demonstrated that the flow transition resulted from flow coupling across the interface between active fluid and oil, with a millimeter–scale coupling length. In addition, two novel millifluidic devices were developed that could trigger and suppress intradroplet circulatory flows in real time: one by changing the thickness of the surrounding oil layer and the other by locally deforming the droplet. This work highlights the role of interfacial dynamics in the active fluid droplet system and shows that circulatory flows within droplets can be affected by millimeter–scale flow coupling across the interface between the active fluid and the oil. 
    more » « less
  5. Active nematic liquid crystals have the remarkable ability to spontaneously deform and flow in the absence of any external driving force. While living materials with orientational order, such as the mitotic spindle, can self-assemble in quiescent active phases, reconstituted active systems often display chaotic, periodic, or circulating flows under confinement. Quiescent active nematics are, therefore, quite rare, despite the prediction from active hydrodynamic theory that confinement between two parallel plates can suppress flows. This spontaneous flow transition—named the active Fréedericksz transition by analogy with the conventional Fréedericksz transition in passive nematic liquid crystals under a magnetic field—has been a cornerstone of the field of active matter. Here, we report experimental evidence that confinement in spherical droplets can stabilize the otherwise chaotic dynamics of a 3D extensile active nematics, giving rise to a quiescent—yet still out-of-equilibrium—nematic liquid crystal. The active nematics spontaneously flow when confined in larger droplets. The composite nature of our model system composed of extensile bundles of microtubules and molecular motors dispersed in a passive colloidal liquid crystal allows us to demonstrate how the interplay of activity, nematic elasticity, and confinement impacts the spontaneous flow transition. The critical diameter increases when motor concentration decreases or nematic elasticity increases. Experiments and simulations also demonstrate that the critical confinement depends on the confining geometry, with the critical diameter in droplets being larger than the critical width in channels. Biochemical assays reveal that neither confinement nor nematic elasticity impacts the energy-consumption rate, confirming that the quiescent active phase is the stable out-of-equilibrium phase predicted theoretically. Further experiments in dense arrays of monodisperse droplets show that fluctuations in the droplet composition can smooth the flow transition close to the critical diameter. In conclusion, our work provides experimental validation of the active Fréedericksz transition in 3D active nematics, with potential applications in human health, ecology, and soft robotics. Published by the American Physical Society2024 
    more » « less