skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flow coupling between active and passive fluids across water–oil interfaces
Abstract Active fluid droplets surrounded by oil can spontaneously develop circulatory flows. However, the dynamics of the surrounding oil and their influence on the active fluid remain poorly understood. To investigate interactions between the active fluid and the passive oil across their interface, kinesin-driven microtubule-based active fluid droplets were immersed in oil and compressed into a cylinder-like shape. The droplet geometry supported intradroplet circulatory flows, but the circulation was suppressed when the thickness of the oil layer surrounding the droplet decreased. Experiments with tracers and network structure analyses and continuum models based on the dynamics of self-elongating rods demonstrated that the flow transition resulted from flow coupling across the interface between active fluid and oil, with a millimeter–scale coupling length. In addition, two novel millifluidic devices were developed that could trigger and suppress intradroplet circulatory flows in real time: one by changing the thickness of the surrounding oil layer and the other by locally deforming the droplet. This work highlights the role of interfacial dynamics in the active fluid droplet system and shows that circulatory flows within droplets can be affected by millimeter–scale flow coupling across the interface between the active fluid and the oil.  more » « less
Award ID(s):
2045621
PAR ID:
10329872
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Active matter consumes local fuels to self-propel. When confined in a closed circular boundary, they can self-organize into a circulatory flow. Such coherence originates from the interactions between the active matter and boundaries, and boundary conditions play an important role on self-organization of active fluid. Herein, we probed how fluid boundaries influenced the self-organization of active fluid. The fluid boundaries were created by confining the active fluid in a compressed water-in-oil droplet. Due to surface tension, the droplet shaped into a cylinder-like geometry. Since water and oil were both fluids, their interface was fluid. We systematically probed how droplet shapes and the amount of oil surrounding the droplet influenced the development of circulation. We found that the formation of circulatory flows depended on the thickness of the oil layer surrounding the droplet, implying that the fluid dynamics between the active fluid within the droplet and the oil outside the droplet were coupled. We used a 3D COMSOL-based simulation successfully reproduced such oil-layer dependence. Finally, we developed two milli-fluidic devices to deform the droplet and alter the oil layer thickness manually to trigger and suppress the intra-droplet circulatory flow in real time. 
    more » « less
  2. Fluid dynamics of conventional passive fluid are known to be affected by boundary condition. For example, flow rates in a pipe depend on slipperiness of pipe surface. Similarly, active fluid, which consumes fuels locally to flow spontaneously, was reported to self-flow along a meter-long tubing with the flow rate depending on tubing geometry. However, how boundary condition influences fluid dynamics in an active fluid system remains poorly understood. Here, we investigated how a fluid boundary influenced self-organization of confined active fluid by establishing a 3D COMSOL-based nemato-hydrodynamic simulation platform where active fluid was confined in a compressed cylindrical water-in-oil droplet. Since the droplet interface was fluid, the fluid dynamics within and outside the droplet were coupled. Our simulation demonstrated that flow behaviors of intra-droplet active fluid were influenced by the amount of oil that surrounded the droplet: Without altering the droplet geometry, expanding the volume of oil could induce a circulatory flow within the droplet, which resembled our experimental observation. Our work suggested the feasibility of controlling the fluid dynamics of a confined active fluid system across a fluid interface. 
    more » « less
  3. Abstract We develop original flow-based methods to interrogate and manipulate out-of-equilibrium behaviour of ternary fluids systems at the small scale. In particular, we examine droplet and jet formation of ternary fluid systems in coaxial microchannels when an aqueous phase is injected into a solvent-rich oil phase using common fluids, such as ethanol for the aqueous phase, silicone oil for the oil phase and isopropanol for the solvent. Alcohols are often employed to impart oil and water properties with a myriad of practical uses as extractants, antiseptics, wetting agents, emulsifiers or biofuels. Here, we systematically examine the role of alcohol solvents on the hydrodynamic stability of aqueous–oil multiphase flows in square microchannels. Broad variations of flow rates and solvent concentration reveal a variety of intriguing droplet and jet flow regimes in the presence of spontaneous emulsification phenomena and significant mass transfer across the fluid interface. Typical flow patterns include dripping and jetting droplets, phase inversion and dynamic wetting and conjugate jets. Functional relationships are developed to model the evolution of multiphase flow characteristics with solvent concentration. This work provides insights into complex natural phenomena relevant to the application of microfluidic droplet systems to chemical assays as well as fluid measurement and characterisation technologies. 
    more » « less
  4. Depinning of liquid droplets on substrates by flow of a surrounding immiscible fluid is central to applications such as cross-flow microemulsification, oil recovery and waste cleanup. Surface roughness, either natural or engineered, can cause droplet pinning, so it is of both fundamental and practical interest to determine the flow strength of the surrounding fluid required for droplet depinning on rough substrates. Here, we develop a lubrication-theory-based model for droplet depinning on a substrate with topographical defects by flow of a surrounding immiscible fluid. The droplet and surrounding fluid are in a rectangular channel, a pressure gradient is imposed to drive flow and the defects are modelled as Gaussian-shaped bumps. Using a precursor-film/disjoining-pressure approach to capture contact-line motion, a nonlinear evolution equation is derived describing the droplet thickness as a function of distance along the channel and time. Numerical solutions of the evolution equation are used to investigate how the critical pressure gradient for droplet depinning depends on the viscosity ratio, surface wettability and droplet volume. Simple analytical models are able to account for many of the features observed in the numerical simulations. The influence of defect height is also investigated, and it is found that, when the maximum defect slope is larger than the receding contact angle of the droplet, smaller residual droplets are left behind at the defect after the original droplet depins and slides away. The model presented here yields considerably more information than commonly used models based on simple force balances, and provides a framework that can readily be extended to study more complicated situations involving chemical heterogeneity and three-dimensional effects. 
    more » « less
  5. In biomechanics, local phenomena, such as tissue perfusion, are strictly related to the global features of the surrounding blood circulation. In this paper, we propose a heterogeneous model where a local, accurate, 3D description of tissue perfusion by means of fluid flows through deformable porous media equations is coupled with a systemic, 0D, lumped model of the remainder of the circulation, where the fluid flow through a vascular network is described via its analog with a current flowing through an electric circuit. This represents a multiscale strategy, which couples an initial boundary value problem to be used in a specific tissue region with an initial value problem in the surrounding circulatory system. This PDE/ODE coupling leads to interface conditions enforcing the continuity of mass and the balance of stresses across models at different scales, and careful consideration is taken to address this interface mismatch. The resulting system involves PDEs of mixed type with interface conditions depending on nonlinear ODEs. A new result on local existence of solutions for this multiscale interface coupling is provided in this article. 
    more » « less