Active matter consumes local fuels to self-propel. When confined in a closed circular boundary, they can self-organize into a circulatory flow. Such coherence originates from the interactions between the active matter and boundaries, and boundary conditions play an important role on self-organization of active fluid. Herein, we probed how fluid boundaries influenced the self-organization of active fluid. The fluid boundaries were created by confining the active fluid in a compressed water-in-oil droplet. Due to surface tension, the droplet shaped into a cylinder-like geometry. Since water and oil were both fluids, their interface was fluid. We systematically probed how droplet shapes and the amount of oil surrounding the droplet influenced the development of circulation. We found that the formation of circulatory flows depended on the thickness of the oil layer surrounding the droplet, implying that the fluid dynamics between the active fluid within the droplet and the oil outside the droplet were coupled. We used a 3D COMSOL-based simulation successfully reproduced such oil-layer dependence. Finally, we developed two milli-fluidic devices to deform the droplet and alter the oil layer thickness manually to trigger and suppress the intra-droplet circulatory flow in real time.
more »
« less
Flow coupling between active and passive fluids across water–oil interfaces
Abstract Active fluid droplets surrounded by oil can spontaneously develop circulatory flows. However, the dynamics of the surrounding oil and their influence on the active fluid remain poorly understood. To investigate interactions between the active fluid and the passive oil across their interface, kinesin-driven microtubule-based active fluid droplets were immersed in oil and compressed into a cylinder-like shape. The droplet geometry supported intradroplet circulatory flows, but the circulation was suppressed when the thickness of the oil layer surrounding the droplet decreased. Experiments with tracers and network structure analyses and continuum models based on the dynamics of self-elongating rods demonstrated that the flow transition resulted from flow coupling across the interface between active fluid and oil, with a millimeter–scale coupling length. In addition, two novel millifluidic devices were developed that could trigger and suppress intradroplet circulatory flows in real time: one by changing the thickness of the surrounding oil layer and the other by locally deforming the droplet. This work highlights the role of interfacial dynamics in the active fluid droplet system and shows that circulatory flows within droplets can be affected by millimeter–scale flow coupling across the interface between the active fluid and the oil.
more »
« less
- Award ID(s):
- 2045621
- PAR ID:
- 10329872
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fluid dynamics of conventional passive fluid are known to be affected by boundary condition. For example, flow rates in a pipe depend on slipperiness of pipe surface. Similarly, active fluid, which consumes fuels locally to flow spontaneously, was reported to self-flow along a meter-long tubing with the flow rate depending on tubing geometry. However, how boundary condition influences fluid dynamics in an active fluid system remains poorly understood. Here, we investigated how a fluid boundary influenced self-organization of confined active fluid by establishing a 3D COMSOL-based nemato-hydrodynamic simulation platform where active fluid was confined in a compressed cylindrical water-in-oil droplet. Since the droplet interface was fluid, the fluid dynamics within and outside the droplet were coupled. Our simulation demonstrated that flow behaviors of intra-droplet active fluid were influenced by the amount of oil that surrounded the droplet: Without altering the droplet geometry, expanding the volume of oil could induce a circulatory flow within the droplet, which resembled our experimental observation. Our work suggested the feasibility of controlling the fluid dynamics of a confined active fluid system across a fluid interface.more » « less
-
Depinning of liquid droplets on substrates by flow of a surrounding immiscible fluid is central to applications such as cross-flow microemulsification, oil recovery and waste cleanup. Surface roughness, either natural or engineered, can cause droplet pinning, so it is of both fundamental and practical interest to determine the flow strength of the surrounding fluid required for droplet depinning on rough substrates. Here, we develop a lubrication-theory-based model for droplet depinning on a substrate with topographical defects by flow of a surrounding immiscible fluid. The droplet and surrounding fluid are in a rectangular channel, a pressure gradient is imposed to drive flow and the defects are modelled as Gaussian-shaped bumps. Using a precursor-film/disjoining-pressure approach to capture contact-line motion, a nonlinear evolution equation is derived describing the droplet thickness as a function of distance along the channel and time. Numerical solutions of the evolution equation are used to investigate how the critical pressure gradient for droplet depinning depends on the viscosity ratio, surface wettability and droplet volume. Simple analytical models are able to account for many of the features observed in the numerical simulations. The influence of defect height is also investigated, and it is found that, when the maximum defect slope is larger than the receding contact angle of the droplet, smaller residual droplets are left behind at the defect after the original droplet depins and slides away. The model presented here yields considerably more information than commonly used models based on simple force balances, and provides a framework that can readily be extended to study more complicated situations involving chemical heterogeneity and three-dimensional effects.more » « less
-
We study the structure and dynamics of the interface separating a passive fluid from a microtubule-based active fluid. Turbulent-like active flows power giant interfacial fluctuations, which exhibit pronounced asymmetry between regions of positive and negative curvature. Experiments, numerical simulations, and theoretical arguments reveal how the interface breaks up the spatial symmetry of the fundamental bend instability to generate local vortical flows that lead to asymmetric interface fluctuations. The magnitude of interface deformations increases with activity: In the high activity limit, the interface self-folds invaginating passive droplets and generating a foam-like phase, where active fluid is perforated with passive droplets. These results demonstrate how active stresses control the structure, dynamics, and break-up of soft, deformable, and reconfigurable liquid–liquid interfaces.more » « less
-
Actively driven, bundled microtubule networks, powered by molecular motors have become a useful framework in which to study the dynamics of energy-driven defects, but achieving control of defect motions is still a challenging problem. In this paper, we present a method to confine active nematic fluid using wetting to curve a layer of oil over circular pillars. This geometry, in which submersed pillars impinge on an oil-water interface, creates a two-tier continuous active layer in which the material is confined above, and surrounds the pillars. Active flows above the pillars are influenced by the circular geometry and exhibit dynamics similar to those observed for active material confined by hard boundaries, e.g., inside circular wells. The thin oil layer beneath the active material is even thinner in the region above the pillars than outside their boundary, consequently producing an area of higher effective friction. Within the pillar region, active length scales and velocities are decreased, while defect densities increase relative to outside the pillar boundary. This new way to confine active flows opens further opportunities to control and organize topological defects and study their behavior in active systems.more » « less