We report a robust method for effectively removing the chemisorbed Br−ions, a capping agent, from the surface of Pd nanocubes to maximize their catalytic activity. The Br−ions can be removed by simply heating the sample in water, but the desorption of Br−ions will expose the underneath Pd atoms to the O2from air for the formation of a relatively thick oxide layer. During potential cycling, the oxide layer evolves into detrimental features such as steps and terraces. By introducing a trace amount of hydrazine into the system, the Br−ions can be removed by heating without forming a thick oxide layer. The as‐cleaned nanocubes show greatly enhanced activity toward formic acid oxidation. This cleaning method can also remove Br−ions from Rh nanocubes and it is expected to work for other combinations of nanocrystals and capping agents.
We report a robust method for effectively removing the chemisorbed Br−ions, a capping agent, from the surface of Pd nanocubes to maximize their catalytic activity. The Br−ions can be removed by simply heating the sample in water, but the desorption of Br−ions will expose the underneath Pd atoms to the O2from air for the formation of a relatively thick oxide layer. During potential cycling, the oxide layer evolves into detrimental features such as steps and terraces. By introducing a trace amount of hydrazine into the system, the Br−ions can be removed by heating without forming a thick oxide layer. The as‐cleaned nanocubes show greatly enhanced activity toward formic acid oxidation. This cleaning method can also remove Br−ions from Rh nanocubes and it is expected to work for other combinations of nanocrystals and capping agents.
more » « less- Award ID(s):
- 1804970
- PAR ID:
- 10237066
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 59
- Issue:
- 43
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 19129-19135
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We report a facile synthesis of Ag‐enriched Ag‐Pd bimetallic nanoframes with ridges as thin as 1.7 nm. The synthesis involves co‐titration of aqueous AgNO3and Na2PdCl4solutions into an aqueous suspension of Ag nanocubes at room temperature in the presence of ascorbic acid and poly(vinyl pyrrolidone). The Ag and Pd atoms derived from the co‐reduction by ascorbic acid are co‐deposited on the edge and corner sites of Ag nanocubes for the generation of Ag@Ag‐Pd core–frame nanocubes. When subjected to H2O2etching, the Ag cores are selectively removed to generate Ag‐Pd bimetallic nanoframes made of ultrathin ridges enriched in Ag. In comparison to both the Ag nanocubes and Ag@Ag‐Pd core‐frame nanocubes, the Ag‐Pd bimetallic nanoframes exhibit markedly enhanced activity in catalyzing the reduction of 4‐nitrophenol by NaBH4.
-
Abstract This article reports a facile method for the synthesis of Pd‐Ru nanocages by activating the galvanic replacement reaction between Pd nanocrystals and a Ru(III) precursor with I
‐ ions. The as‐synthesized nanocages feature a hollow interior, ultrathin wall of ≈2.5 nm in thickness, and a cubic shape. Our quantitative study suggests that the reduction rate of the Ru(III) precursor can be substantially accelerated upon the introduction of I‐ ions and then retarded as the ratio of I‐ /Ru3+is increased. The Pd‐Ru nanocages take an alloy structure, with the Ru atoms in the nanocages crystallized in a face‐centered cubic structure instead of the hexagonal close‐packed phase taken by bulk Ru. Using Pd nanocubes with different edge lengths, the dimensions of the nanocages in the range of 6−18 nm can readily be tuned. When tested as catalysts toward the electro‐oxidation of ethylene glycol and glycerol, respectively, the Pd‐Ru cubic nanocages prepared from 18 nm Pd cubes exhibit 5.1‐ and 6.2‐fold enhancements in terms of mass activity relative to the commercial Pd/C. After 1000 cycles of accelerated durability test, the mass activities of the nanocages are still 3.3 and 3.7 times as high as that of the pristine commercial Pd/C catalyst, respectively. -
Abstract We present a one‐pot colloidal synthesis method for producing monodisperse multi‐metal (Co, Mn, and Fe) spinel nanocrystals (NCs), including nanocubes, nano‐octahedra, and concave nanocubes. This study explores the mechanism of morphology control, showcasing the pivotal roles of metal precursors and capping ligands in determining the exposed crystal planes on the NC surface. The cubic spinel NCs, terminated with exclusive {100}‐facets, demonstrate superior electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media compared to their octahedral and concave cubic counterparts. Specifically, at 0.85 V, (CoMn)Fe2O4spinel oxide nanocubes achieve a high mass activity of 23.9 A/g and exhibit excellent stability, highlighting the promising ORR performance associated with {100}‐facets of multi‐metal spinel oxides over other low‐index and high‐index facets. Motivated by exploring the correlation between ORR performance and surface atom arrangement (active sites), surface element composition, as well as other factors, this study introduces a prospective approach for shape‐controlled synthesis of advanced spinel oxide NCs. It underscores the significance of catalyst shape control and suggests potential applications as nonprecious metal ORR electrocatalysts.
-
We report the fabrication of Ag–Pd concave nanocrystals by introducing the Pd( ii ) precursor into an aqueous suspension of Ag nanocubes in the presence of cetyltrimethylammonium chloride (CTAC) under ambient conditions. Different from the previously reported work that involved the oxidation of Ag and deposition of Pd at random sites on the surface for the generation of Ag–Pd hollow nanocrystals, we demonstrate that the Cl − ions from CTAC can confine the oxidation of Ag atoms to the side faces of a nanocube while the resultant Pd atoms are deposited on the edges in an orthogonal manner. By controlling the amount of the Pd( ii ) precursor involved in a synthesis, we can transform Ag nanocubes into Ag–Pd nanocrystals with different degrees of concaveness for the side faces and controllable Pd contents. We characterize the outermost layer of concave surfaces for the as-obtained Ag–Pd nanocrystals by surface-enhanced Raman scattering (SERS) through the use of an isocyanide probe. This facile approach would enable the fabrication of Ag-based concave nanocrystals for applications in plasmonics and catalysis.more » « less