skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Peak and Per-Step Tibial Bone Stress During Walking and Running in Female and Male Recreational Runners
Background:Athletes, especially female athletes, experience high rates of tibial bone stress injuries (BSIs). Knowledge of tibial loads during walking and running is needed to understand injury mechanisms and design safe running progression programs. Purpose:To examine tibial loads as a function of gait speed in male and female runners. Study Design:Controlled laboratory study. Methods:Kinematic and kinetic data were collected on 40 recreational runners (20 female, 20 male) during 4 instrumented gait speed conditions on a treadmill (walk, preferred run, slow run, fast run). Musculoskeletal modeling, using participant-specific magnetic resonance imaging and motion data, was used to estimate tibial stress. Peak tibial stress and stress-time impulse were analyzed using 2-factor multivariate analyses of variance (speed*sex) and post hoc comparisons (α = .05). Bone geometry and tibial forces and moments were examined. Results:Peak compression was influenced by speed ( P < .001); increasing speed generally increased tibial compression in both sexes. Women displayed greater increases in peak tension ( P = .001) and shear ( P < .001) than men when transitioning from walking to running. Further, women displayed greater peak tibial stress overall ( P < .001). Compressive and tensile stress-time impulse varied by speed ( P < .001) and sex ( P = .006); impulse was lower during running than walking and greater in women. A shear stress-time impulse interaction ( P < .001) indicated that women displayed greater impulse relative to men when changing from a walk to a run. Compared with men, women displayed smaller tibiae ( P < .001) and disproportionately lower tibial forces ( P≤ .001-.035). Conclusion:Peak tibial stress increased with gait speed, with a 2-fold increase in running relative to walking. Women displayed greater tibial stress than men and greater increases in stress when shifting from walking to running. Sex differences appear to be the result of smaller bone geometry in women and tibial forces that were not proportionately lower, given the womens’ smaller stature and lower mass relative to men. Clinical Relevance:These results may inform interventions to regulate running-related training loads and highlight a need to increase bone strength in women. Lower relative bone strength in women may contribute to a sex bias in tibial BSIs, and female runners may benefit from a slower progression when initiating a running program.  more » « less
Award ID(s):
1659796
PAR ID:
10237224
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
The American Journal of Sports Medicine
Volume:
49
Issue:
8
ISSN:
0363-5465
Page Range / eLocation ID:
p. 2227-2237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Preventing bone stress injuries (BSI) requires a deep understanding of the condition’s underlying causes and risk factors. Subject-specific computer modeling studies of gait mechanics, including the effect of changes in running speed, stride length, and landing patterns on tibial stress injury formation can provide essential insights into BSI prevention. This study aimed to computationally examine the effect of different exercise protocols on tibial fatigue life in male and female runners during prolonged walking and running at three different speeds. To achieve these aims, we combined subject-specific magnetic resonance imaging (MRI), gait data, finite element analysis, and a fatigue life prediction algorithm, including repair and adaptation’s influence. The algorithm predicted a steep increase in the likelihood of developing a BSI within the first 40 days of activity. In five of the six subjects simulated, faster running speeds corresponded with higher tibial strains and higher probability of failure. Our simulations also showed that female subjects had a higher mean peak probability of failure in all four gait conditions than the male subjects studied. The approach used in this study could lay the groundwork for studies in larger populations and patient-specific clinical tools and decision support systems to reduce BSIs in athletes, military personnel, and other active individuals. 
    more » « less
  2. Abstract ObjectivesVariation in trabecular and cortical bone properties is often used to infer habitual behavior in the past. However, the structures of both types of bone are rarely considered together and may even contradict each other in functional interpretations. We examine trabecular and cortical bone properties in various athletes and sedentary controls to clarify the associations between combinations of cortical and trabecular bone properties and various loading modalities. Materials and methodsWe compare trabecular and cortical bone properties using peripheral quantitative computed tomography scans of the tibia between groups of 83 male athletes (running, hockey, swimming, cricket) and sedentary controls using Bayesian multilevel models. We quantify midshaft cortical bone rigidity and area (J, CA), midshaft shape index (Imax/Imin), and mean trabecular bone mineral density (BMD) in the distal tibia. ResultsAll groups show unique combinations of biomechanical properties. Cortical bone rigidity is high in sports that involve impact loading (cricket, running, hockey) and low in nonimpact loaded swimmers and controls. Runners have more anteroposteriorly elliptical midshafts compared to other groups. Interestingly, all athletes have greater trabecular BMD compared to controls, but do not differ credibly among each other. DiscussionResults suggest that cortical midshaft hypertrophy is associated with impact loading while trabecular BMD is positively associated with both impact and nonimpact loading. Midshaft shape is associated with directionality of loading. Individuals from the different categories overlap substantially, but group means differ credibly, suggesting that nuanced group‐level inferences of habitual behavior are possible when combinations of trabecular and cortical bone are analyzed. 
    more » « less
  3. ABSTRACT Bone adapts its architecture to the applied load; however, it is still unclear how bone mechano‐adaptation is coordinated and why potential for adaptation adjusts during the life course. Previous animal models have suggested strain as the mechanical stimulus for bone adaptation, but yet it is unknown how mouse cortical bone load‐related strains vary with age and sex. In this study, full‐field strain maps (at 1 N increments up to 12 N) on the bone surface were measured in young, adult, and old (aged 10, 22 weeks, and 20 months, respectively), male and female C57BL/6J mice with load applied using a noninvasive murine tibial model. Strain maps indicate a nonuniform strain field across the tibial surface, with axial compressive loads resulting in tension on the medial side of the tibia because of its curved shape. The load‐induced surface strain patterns and magnitudes show sexually dimorphic changes with aging. A comparison of the average and peak tensile strains indicates that the magnitude of strain at a given load generally increases during maturation, with tibias in female mice having higher strains than in males. The data further reveal that postmaturation aging is linked to sexually dimorphic changes in average and maximum strains. The strain maps reported here allow for loading male and female C57BL/6J mouse legs in vivo at the observed ages to create similar increases in bone surface average or peak strain to more accurately explore bone mechano‐adaptation differences with age and sex. © 2021 The Authors.JBMR Pluspublished by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research. 
    more » « less
  4. Abstract ObjectivesThis study compared the prevalence of concentrated urine (urine specific gravity ≥1.021), an indicator of hypohydration, across Tsimane' hunter‐forager‐horticulturalists living in hot‐humid lowland Bolivia and Daasanach agropastoralists living in hot‐arid Northern Kenya. It tested the hypotheses that household water and food insecurity would be associated with higher odds of hypohydration. MethodsThis study collected spot urine samples and corresponding weather data along with data on household water and food insecurity, demographics, and health characteristics among 266 Tsimane' households (N = 224 men, 235 women, 219 children) and 136 Daasanach households (N = 107 men, 120 women, 102 children). ResultsThe prevalence of hypohydration among Tsimane' men (50.0%) and women (54.0%) was substantially higher (P < .001) than for Daasanach men (15.9%) and women (17.5%); the prevalence of hypohydration among Tsimane' (37.0%) and Daasanach (31.4%) children was not significantly different (P= .33). Multiple logistic regression models suggested positive but not statistically significant trends between household water insecurity and odds of hypohydration within populations, yet some significant joint effects of water and food insecurity were observed. Heat index (2°C) was associated with a 23% (95% confidence interval [CI]: 1.09‐1.40,P= .001), 34% (95% CI: 1.18‐1.53,P < .0005), and 23% (95% CI: 1.04‐1.44,P= .01) higher odds of hypohydration among Tsimane' men, women, and children, respectively, and a 48% (95% CI: 1.02‐2.15,P= .04) increase in the odds among Daasanach women. Lactation status was also associated with hypohydration among Tsimane' women (odds ratio = 3.35, 95% CI: 1.62‐6.95,P= .001). ConclusionThese results suggest that heat stress and reproductive status may have a greater impact on hydration status than water insecurity across diverse ecological contexts. 
    more » « less
  5. Abstract Background and objectivesPregnancy, heat stress, and physical activity (PA) are all known to independently increase human water requirements. We hypothesize that climate conditions and behavioral strategies interact to shape water needs in highly active pregnancies. MethodologyWe recruited 20 female endurance runners who were pregnant (8–16 weeks gestational age; n = 13) or planning to be pregnant (n = 7) for an observational, prospective cohort study. At three timepoints in the study (preconception, 8–16 weeks, and 32–35 weeks), we measured water turnover (WT) using the deuterium dilution and elimination technique, PA using ActiGraph wGT3X-BT accelerometers, and heat index (HI) using historical temperature and humidity data. We also compared athletes to nonathletes from a previously published study. ResultsAthletes maintained high WT from preconception through the end of pregnancy. PA was positively associated with WT among athletes for preconception and early pregnancy time periods but not for the third trimester. HI weakly moderated the relationship between PA and WT in predicting a more positive slope in hotter and more humid weather conditions. WT in athletes was higher than in nonathletes, but this difference attenuated during the third trimester, as nonathletes increased their WT. Conclusions and implicationsAthletes experience higher WT with greater levels of PA, and this relationship is somewhat stronger in higher HI conditions. With the threat of climate change expected to exacerbate extreme heat conditions, evidence-based, global policies are required for particularly vulnerable populations. 
    more » « less