skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combinations of trabecular and cortical bone properties distinguish various loading modalities between athletes and controls
Abstract ObjectivesVariation in trabecular and cortical bone properties is often used to infer habitual behavior in the past. However, the structures of both types of bone are rarely considered together and may even contradict each other in functional interpretations. We examine trabecular and cortical bone properties in various athletes and sedentary controls to clarify the associations between combinations of cortical and trabecular bone properties and various loading modalities. Materials and methodsWe compare trabecular and cortical bone properties using peripheral quantitative computed tomography scans of the tibia between groups of 83 male athletes (running, hockey, swimming, cricket) and sedentary controls using Bayesian multilevel models. We quantify midshaft cortical bone rigidity and area (J, CA), midshaft shape index (Imax/Imin), and mean trabecular bone mineral density (BMD) in the distal tibia. ResultsAll groups show unique combinations of biomechanical properties. Cortical bone rigidity is high in sports that involve impact loading (cricket, running, hockey) and low in nonimpact loaded swimmers and controls. Runners have more anteroposteriorly elliptical midshafts compared to other groups. Interestingly, all athletes have greater trabecular BMD compared to controls, but do not differ credibly among each other. DiscussionResults suggest that cortical midshaft hypertrophy is associated with impact loading while trabecular BMD is positively associated with both impact and nonimpact loading. Midshaft shape is associated with directionality of loading. Individuals from the different categories overlap substantially, but group means differ credibly, suggesting that nuanced group‐level inferences of habitual behavior are possible when combinations of trabecular and cortical bone are analyzed.  more » « less
Award ID(s):
1719140 1719187
PAR ID:
10453248
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ; ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Physical Anthropology
Volume:
174
Issue:
3
ISSN:
0002-9483
Format(s):
Medium: X Size: p. 434-450
Size(s):
p. 434-450
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ObjectiveBone mineral density (BMD) and frame size are important predictors of future bone health, with smaller frame size and lower BMD associated with higher risk of later fragility fractures. We test the effects of body size, habitual use, and life history on frame size and cortical BMD of the radius and tibia in sample of healthy adult premenopausal women. MethodsWe used anthropometry and life history data from 123 women (age 18‐46) from rural Poland. Standard techniques were used to measure height, weight, and body fat. Life history factors were recorded using surveys. Grip strength was measured as a proxy for habitual activity, wrist breadth for skeletal frame size. Cortical BMD was measured at the one‐third distal point of the radius and mid‐point of the tibia using quantitative ultrasound (reported as speed of sound, SoS). ResultsRadial SoS was high (meant‐score 3.2 ± 1.6), but tibia SoS was average (meant‐score 0.35 ± 1.17). SoS was not associated with age, although wrist breadth was positively associated with age after adjusting for height. Radius SoS was not associated with measures of body size, habitual use, or life history factors. Wrist breadth was associated with body size (p < .05 for all), lean mass, and grip strength. Tibia SoS was associated with height. Life history factors were not associated with frame size or cortical SoS. ConclusionsHabitual use and overall body size are more strongly associated with frame size and cortical SoS than life history factors in this sample of healthy adult women. 
    more » « less
  2. Abstract Western diets are becoming increasingly common around the world. Western diets have high omega 6 (ω-6) and omega 3 (ω-3) fatty acids and are linked to bone loss in humans and animals. Dietary fats are not created equal; therefore, it is vital to understand the effects of specific dietary fats on bone. We aimed to determine how altering the endogenous ratios of ω-6:ω-3 fatty acids impacts bone accrual, strength, and fracture toughness. To accomplish this, we used the Fat-1 transgenic mice, which carry a gene responsible for encoding a ω-3 fatty acid desaturase that converts ω-6 to ω-3 fatty acids. Male and female Fat-1 positive mice (Fat-1) and Fat-1 negative littermates (WT) were given either a high-fat diet (HFD) or low-fat diet (LFD) at 4 wk of age for 16 wk. The Fat-1 transgene reduced fracture toughness in males. Additionally, male BMD, measured from DXA, decreased over the diet duration for HFD mice. In males, neither HFD feeding nor the presence of the Fat-1 transgene impacted cortical geometry, trabecular architecture, or whole-bone flexural properties, as detected by main group effects. In females, Fat-1-LFD mice experienced increases in BMD compared to WT-LFD mice; however, cortical area, distal femur trabecular thickness, and cortical stiffness were reduced in Fat-1 mice compared to pooled WT controls. However, reductions in stiffness were caused by a decrease in bone size and were not driven by changes in material properties. Together, these results demonstrate that the endogenous ω-6:ω-3 fatty acid ratio influences bone material properties in a sex-dependent manner. In addition, Fat-1 mediated fatty acid conversion was not able to mitigate the adverse effects of HFD on bone strength and accrual. 
    more » « less
  3. Abstract ObjectivesThe objective of this study is to demonstrate a new method for analyzing trabecular bone volume fraction and degree of anisotropy in three dimensions. MethodsWe use a combination of automatic mesh registration, point‐cloud correspondence registration, andP‐value corrected univariate statistical tests to compare bone volume fraction and degree of anisotropy on a point by point basis across the entire calcaneus of two human groups with different subsistence strategies. ResultsWe found that the patterns of high and low bone volume fraction and degree of anisotropy distribution between the Black Earth (hunter‐gatherers) and Norris Farms (mixed‐strategy agriculturalists) are very similar, but differ in magnitude. The hunter‐gatherers exhibit higher levels of bone volume fraction and less anisotropic trabecular bone organization. Additionally, patterns of bone volume fraction and degree of anisotropy in the calcaneus correspond well with biomechanical expectations of relative forces experienced during walking and running. ConclusionsWe conclude that comparing site‐specific, localized differences in trabecular bone variables such as bone volume fraction and degree of anisotropy in three‐dimensions is a powerful analytical tool. This method makes it possible to determine where similarities and differences between groups are located within the whole skeletal element of interest. The visualization of multiple variables also provides a way for researchers to see how the trabecular bone variables interact within the morphology, and allows for a more nuanced understanding of how they relate to one another and the broader mechanical environment. 
    more » « less
  4. Abstract ObjectivesVariation in human trabecular bone morphology can be linked to habitual behavior, but it is difficult to investigate in vivo due to the radiation required at high resolution. Consequently, functional interpretations of trabecular morphology remain inferential. Here we introduce a method to link low‐ and high‐resolution CT data from dry and fresh bone, enabling bone functional adaptation to be studied in vivo and results compared to the fossil and archaeological record. Materials and methodsWe examine 51 human dry bone distal tibiae from Nile Valley and UK and two pig tibiae containing soft tissues. We compare low‐resolution peripheral quantitative computed tomography (pQCT) parameters and high‐resolution micro CT (μCT) in homologous single slices at 4% bone length and compare results to our novel Bone Ratio Predictor (BRP) method. ResultsRegression slopes between linear attenuation coefficients of low‐resolution pQCT images and bone area/total area (BA/TA) of high‐resolution μCT scans differ substantially between geographical subsamples, presumably due to diagenesis. BRP accurately predicts BA/TA (R2= .97) and eliminates the geographic clustering. BRP accurately estimates BA/TA in pigs containing soft tissues (R2= 0.98) without requiring knowledge of true density or phantom calibration of the scans. DiscussionBRP allows automated comparison of image data from different image modalities (pQCT, μCT) using different energy settings, in archeological bone and wet specimens. The method enables low‐resolution data generated in vivo to be compared with the fossil and archaeological record. Such experimental approaches would substantially improve behavioral inferences based on trabecular bone microstructure. 
    more » « less
  5. ABSTRACT Although strong evidence exists that certain activities can increase bone density and structure in people, it is unclear what specific mechanical factors govern the response. This is important because understanding the effect of mechanical signals on bone could contribute to more effective osteoporosis prevention methods and efficient clinical trial design. The degree to which strain rate and magnitude govern bone adaptation in humans has never been prospectively tested. Here, we studied the effects of a voluntary upper extremity compressive loading task in healthy adult women during a 12-month prospective period. A total of 102 women age 21 to 40 years participated in one of two experiments: (i) low (n = 21) and high (n = 24) strain magnitude; or (ii) low (n = 21) and high (n = 20) strain rate. Control (n = 16) no intervention. Strains were assigned using subject-specific finite element models. Load cycles were recorded digitally. The primary outcome was change in ultradistal radius integral bone mineral content (iBMC), assessed with QCT. Interim time points and secondary outcomes were assessed with high resolution pQCT (HRpQCT) at the distal radius. Sixty-six participants completed the intervention, and interim data were analyzed for 77 participants. Likely related to improved compliance and higher received loading dose, both the low-strain rate and high-strain rate groups had significant 12-month increases to ultradistal iBMC (change in control: −1.3 ± 2.7%, low strain rate: 2.7 ± 2.1%, high strain rate: 3.4 ± 2.2%), total iBMC, and other measures. “Loading dose” was positively related to 12-month change in ultradistal iBMC, and interim changes to total BMD, cortical thickness, and inner trabecular BMD. Participants who gained the most bone completed, on average, 128 loading bouts of (mean strain) 575 με at 1878 με/s. We conclude that signals related to strain magnitude, rate, and number of loading bouts contribute to bone adaptation in healthy adult women, but only explain a small amount of variance in bone changes. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research. 
    more » « less