skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Rational ligand choice extends the SABRE substrate scope
Here we report on chelating ligands for Signal Amplification By Reversible Exchange (SABRE) catalysts that permit hyperpolarisation on otherwise sterically hindered substrates. We demonstrate 1 H enhancements of ∼100-fold over 8.5 T thermal for 2-substituted pyridines, and smaller, yet significant enhancements for provitamin B 6 and caffeine. We also show 15 N-enhancements of ∼1000-fold and 19 F-enhancements of 30-fold.  more » « less
Award ID(s):
1665090 1904780
PAR ID:
10172203
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
ISSN:
1359-7345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Snowpacks contain a wide variety of inorganic and organic compounds, including some that absorb sunlight and undergo direct photoreactions. How the rates of these reactions in, and on, ice compare to rates in water is unclear: some studies report similar rates, while others find faster rates in/on ice. Further complicating our understanding, there is conflicting evidence whether chemicals react more quickly at the air–ice interface compared to in liquid-like regions (LLRs) within the ice. To address these questions, we measured the photodegradation rate of guaiacol (2-methoxyphenol) in various sample types, including in solution, in ice, and at the air–ice interface of nature-identical snow. Compared to aqueous solution, we find modest rate constant enhancements (increases of 3- to 6-fold) in ice LLRs, and much larger enhancements (of 17- to 77-fold) at the air–ice interface of nature-identical snow. Our computational modeling suggests the absorption spectrum for guaiacol red-shifts and increases on ice surfaces, leading to more light absorption, but these changes explain only a small portion (roughly 2 to 9%) of the observed rate constant enhancements in/on ice. This indicates that increases in the quantum yield are primarily responsible for the increased photoreactivity of guaiacol on ice; relative to solution, our results suggest that the quantum yield is larger by a factor of roughly 3–6 in liquid-like regions and 12–40 at the air–ice interface. 
    more » « less
  2. null (Ed.)
    A series of bidentate N-heterocyclic carbene (NHC) iridium catalysts, [Ir(κC,N-NHC)H 2 L 2 ]BPh 4 , are proposed for SABRE hyperpolarization. The steric and electronic properties of the NHCs are used to tune substrate affinity and thereby SABRE efficiency. The sterically hindered substrates 2,4-diaminopyrimidine and trimethoprim yielded maximum proton NMR signal enhancements of ∼300-fold and ∼150-fold, respectively. 
    more » « less
  3. Abstract

    We report on CO2electroreduction activity and selectivity of a polycrystalline AgZn foil in aqueous bicarbonate electrolyte. X‐ray photoelectron spectroscopy (XPS) and X‐ray diffraction (XRD) measurements show that the alloy foil was slightly enriched in zinc both at the surface and in the bulk, with a surface alloy composition of 61.3±5.4 at % zinc and with Ag5Zn8as the most prominent bulk phase. AgZn is active for CO2reduction; CO is the main product, likely due to the weak CO binding energy of the surface, with methane and methanol emerging as minor products. Compared to pure silver and pure zinc foils, enhancements in activity and selectivity for methane and methanol are observed. A five‐fold increase is observed in the combined partial current densities for methane and methanol at −1.43 V vs. the reversible hydrogen electrode (RHE), representing a four‐ to six‐fold increase in faradaic efficiency. Such enhancements indicate the existence of a synergistic effect between silver and zinc at the surface of the alloy that contributes to the enhanced formation of further reduced products.

     
    more » « less
  4. Abstract. Photochemical reactions of contaminants in snow and ice can be importantsinks for organic and inorganic compounds deposited onto snow from theatmosphere and sources for photoproducts released from snowpacks into theatmosphere. Snow contaminants can be found in the bulk ice matrix, ininternal liquid-like regions (LLRs), or in quasi-liquid layers (QLLs) at theair–ice interface, where they can readily exchange with the firn air. Somestudies have reported that direct photochemical reactions occur faster inLLRs and QLLs than in aqueous solution, while others have found similarrates. Here, we measure the photodegradation rate constants for loss of thethree dimethoxybenzene isomers under varying experimental conditions,including in aqueous solution, in LLRs, and at the air–ice interface ofnature-identical snow. Relative to aqueous solution, we find modestphotodegradation enhancements (3- and 6-fold) in LLRs for two of theisomers and larger enhancements (15- to 30-fold) at the air–ice interfacefor all three isomers. We use computational modeling to assess the impact oflight absorbance changes on photodegradation rate enhancements at theinterface. We find small (2–5 nm) bathochromic (red) absorbance shifts atthe interface relative to in solution, which increases light absorption, butthis factor only accounts for less than 50 % of the measured rate constantenhancements. The major factor responsible for photodegradation rateenhancements at the air–ice interface appears to be more efficientphotodecay: estimated dimethoxybenzene quantum yields are 6- to 24-foldlarger at the interface compared to in aqueous solution and account for themajority (51 %–96 %) of the observed enhancements. Using a hypotheticalmodel compound with an assumed Gaussian-shaped absorbance peak, we find thata shift in the peak to higher or lower wavelengths can have a minor tosubstantial impact on photodecay rate constants, depending on the originallocation of the peak and the magnitude of the shift. Changes in other peakproperties at the air–ice interface, such as peak width and height (i.e.,molar absorption coefficient), can also impact rates of light absorption anddirect photodecay. Our results suggest our current understanding ofphotodegradation processes underestimates the rate at which some compoundsare broken down, as well as the release of photoproducts into theatmosphere. 
    more » « less
  5. The requirements of augmented signal contrast provided by nanoparticle tags in biosensor microscopy-based point-of-care technologies for cancer and infectious disease diagnostics can be addressed through metallo-dielectric nanoarchitectures that enhance optical scattering and absorption to provide digital resolution detection of single tags with simple instrumentation. Photonic Resonator Interferometric Scattering Microscopy (PRISM) enables label-free visualization of nanometer-scale analytes such as extracellular vesicles and virions, and its applicability can be extended to biomolecular analyte counting through nanoparticle tags. Here, we present template-free, linker-less cryosoret nano-assemblies fabricated via adiabatic cooling (−196 °C) as plasmonic nano-antennas that provide high scattering contrast in PRISM. Plasmonic Ag and Au nanomaterials and their cryosorets are evaluated through imaging experiments and simulations based on the finite element method to understand the photo-plasmonic coupling effect at the surface of a photonic crystal (PC) interface. The Ag and Au cryosorets provide at most 8.29-fold and 6.77-fold higher signal contrast compared to their singlet counterpart. Through the simulations, the averaged field magnitude enhancements of 2.77-fold and 3.68-fold are observed for Ag and Au cryosorets when interfacing with PCs compared to bare glass substrates. The hybrid coupling between the localized Mie and delocalized Bragg plasmons of cryosorets and the underlying PC's guided mode resonance provides insights for developing nano-assembly-based nano-tags for biosensing applications.

     
    more » « less