skip to main content


Title: Randomized greedy algorithm for independent sets in regular uniform hypergraphs with large girth
Abstract

In this paper, we consider a randomized greedy algorithm for independent sets inr‐uniformd‐regular hypergraphsGonnvertices with girthg. By analyzing the expected size of the independent sets generated by this algorithm, we show that, whereconverges to 0 asg → for fixeddandr, andf(d, r) is determined by a differential equation. This extends earlier results of Garmarnik and Goldberg for graphs [8]. We also prove that when applying this algorithm to uniform linear hypergraphs with bounded degree, the size of the independent sets generated by this algorithm concentrate around the mean asymptotically almost surely.

 
more » « less
Award ID(s):
1800832
NSF-PAR ID:
10237374
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Random Structures & Algorithms
Volume:
59
Issue:
1
ISSN:
1042-9832
Page Range / eLocation ID:
p. 79-95
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In 1990 Bender, Canfield, and McKay gave an asymptotic formula for the number of connected graphs onwith m edges, wheneverand. We give an asymptotic formula for the numberof connected r‐uniform hypergraphs onwith m edges, wheneveris fixed andwith, that is, the average degree tends to infinity. This complements recent results of Behrisch, Coja‐Oghlan, and Kang (the case) and the present authors (the case, ie, “nullity” or “excess”o(n)). The proof is based on probabilistic methods, and in particular on a bivariate local limit theorem for the number of vertices and edges in the largest component of a certain random hypergraph. The arguments are much simpler than in the sparse case; in particular, we can use “smoothing” techniques to directly prove the local limit theorem, without needing to first prove a central limit theorem.

     
    more » « less
  2. Abstract

    In this paper we provide an algorithm that generates a graph with given degree sequence uniformly at random. Provided that, whereis the maximal degree andmis the number of edges, the algorithm runs in expected timeO(m). Our algorithm significantly improves the previously most efficient uniform sampler, which runs in expected timefor the same family of degree sequences. Our method uses a novel ingredient which progressively relaxes restrictions on an object being generated uniformly at random, and we use this to give fast algorithms for uniform sampling of graphs with other degree sequences as well. Using the same method, we also obtain algorithms with expected run time which is (i) linear for power‐law degree sequences in cases where the previous best wasO(n4.081), and (ii)O(nd + d4) ford‐regular graphs when, where the previous best wasO(nd3).

     
    more » « less
  3. Abstract

    We study a new geometric bootstrap percolation model,line percolation, on thed‐dimensional integer grid. In line percolation with infection parameterr, infection spreads from a subsetof initially infected lattice points as follows: if there exists an axis‐parallel lineLwithror more infected lattice points on it, then every lattice point ofonLgets infected, and we repeat this until the infection can no longer spread. The elements of the setAare usually chosen independently, with some densityp, and the main question is to determine, the density at which percolation (infection of the entire grid) becomes likely. In this paper, we determineup to a multiplicative factor ofandup to a multiplicative constant asfor every fixed. We also determine the size of the minimal percolating sets in all dimensions and for all values of the infection parameter.

     
    more » « less
  4. Abstract

    For graphsGandF, writeif any coloring of the edges ofGwithcolors yields a monochromatic copy of the graphF. Supposeis obtained from a graphSwithsvertices and maximum degreedby subdividing its edgeshtimes (that is, by replacing the edges ofSby paths of lengthh + 1). We prove that there exists a graphGwith no more thanedges for whichholds, provided that. We also extend this result to the case in whichQis a graph with maximum degreedonqvertices with the property that every pair of vertices of degree greater than 2 are distance at leasth + 1 apart. This complements work of Pak regarding the size Ramsey number of “long subdivisions” of bounded degree graphs.

     
    more » « less
  5. Abstract

    The classical Hadwiger conjecture dating back to 1940s states that any graph of chromatic number at leastrhas the clique of orderras a minor. Hadwiger's conjecture is an example of a well‐studied class of problems asking how large a clique minor one can guarantee in a graph with certain restrictions. One problem of this type asks what is the largest size of a clique minor in a graph onnvertices of independence numberat mostr. If true Hadwiger's conjecture would imply the existence of a clique minor of order. Results of Kühn and Osthus and Krivelevich and Sudakov imply that if one assumes in addition thatGisH‐free for some bipartite graphHthen one can find a polynomially larger clique minor. This has recently been extended to triangle‐free graphs by Dvořák and Yepremyan, answering a question of Norin. We complete the picture and show that the same is true for arbitrary graphH, answering a question of Dvořák and Yepremyan. In particular, we show that any‐free graph has a clique minor of order, for some constantdepending only ons. The exponent in this result is tight up to a constant factor in front of theterm.

     
    more » « less