skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linking land change model evaluation to model objective for the assessment of land cover change impacts on biodiversity
Award ID(s):
1637630
PAR ID:
10237417
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Landscape Ecology
ISSN:
0921-2973
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Land-use and land-cover change (LULCC) is one of the most important forcings affecting climate in the past century. This study evaluates the global and regional LULCC impacts in 1950–2015 by employing an annually updated LULCC map in a coupled land–atmosphere–ocean model. The difference between LULCC and control experiments shows an overall land surface temperature (LST) increase by 0.48 K in the LULCC regions and a widespread LST decrease by 0.18 K outside the LULCC regions. A decomposed temperature metric (DTM) is applied to quantify the relative contribution of surface processes to temperature changes. Furthermore, while precipitation in the LULCC areas is reduced in agreement with declined evaporation, LULCC causes a southward displacement of the intertropical convergence zone (ITCZ) with a narrowing by 0.5°, leading to a tripole anomalous precipitation pattern over the warm pool. The DTM shows that the temperature response in LULCC regions results from the competing effect between increased albedo (cooling) and reduced evaporation (warming). The reduced evaporation indicates less atmospheric latent heat release in convective processes and thus a drier and cooler troposphere, resulting in a reduction in surface cooling outside the LULCC regions. The southward shift of the ITCZ implies a northward cross-equatorial energy transport anomaly in response to reduced latent/sensible heat of the atmosphere in the Northern Hemisphere, where LULCC is more intensive. Tropospheric cooling results in the equatorward shift of the upper-tropospheric westerly jet in both hemispheres, which, in turn, leads to an equatorward narrowing of the Hadley circulation and ITCZ. 
    more » « less
  2. Argentina is experiencing an expansion of soya and maize cultivation that is pushing the agricultural frontier over areas formerly occupied by native Chaco forest. Subsistance farmers use this dry forest to raise goats and cattle and to obtain a broad range of goods and services. Thus, two very different and non-compatible land uses are in dispute. On the one hand subsistance farmers fostering an extensive and diversified forest use, on the other hand, large-scale producers who need to clear out the forest to sow annual crops in order to appropriate soil fertility. First, the paper looks at how these social actors perceive Chaco forest, what their interests are, and what kind of values they attach to it. Second, we analyze the social-environmental conflicts that arise among actors in order to appropriate forest’s benefits. Special attention is paid to the role played by the government in relation to: (a) how does it respond to the demands of the different sectors; and (b) how it deals with the management recommendations produced by scientists carrying out social and ecological research. To put these ideas at test we focus on a case study located in Western Córdoba (Argentina), where industrial agriculture is expanding at a fast pace, and where social actors’ interests are generating a series of disputes and conflicts. Drawing upon field work, the paper shows how power alliances between economic and political powers, use the institutional framework of the State in their own benefit, disregarding wider environmental and social costs. 
    more » « less
  3. Abstract Deforestation due to land-use and land-cover (LULC) change has been linked to increased emerging zoonotic disease risk despite limited local level data on such outbreaks. This Forum reevaluates this risk inference using newly released data on zoonotic disease outbreaks, accounting for Structural One Health features, including socioeconomic development and armed conflict covariates. Event and time series data on disease and forest coverage anomalies at the 0.5-degree level for every month between January 2003 and December 2018 are used to estimate the relationship between LULC and zoonosis using Poisson generalized additive and generalized linear models. Once adjusted for Structural One Health features, outbreak risk is 7%–200% higher in areas that experienced forest cover reversion. These results highlight the importance of accounting for Structural One Health factors when analyzing complex socioecological phenomena such as the LULC–infectious disease nexus. 
    more » « less