skip to main content

Title: 2 H/ 1 H variation in microbial lipids is controlled by NADPH metabolism
The hydrogen-isotopic compositions ( 2 H/ 1 H ratios) of lipids in microbial heterotrophs are known to vary enormously, by at least 40% (400‰) relative. This is particularly surprising, given that most C-bound H in their lipids appear to derive from the growth medium water, rather than from organic substrates, implying that the isotopic fractionation between lipids and water is itself highly variable. Changes in the lipid/water fractionation are also strongly correlated with the type of energy metabolism operating in the host. Because lipids are well preserved in the geologic record, there is thus significant potential for using lipid 2 H/ 1 H ratios to decipher the metabolism of uncultured microorganisms in both modern and ancient ecosystems. But despite over a decade of research, the precise mechanisms underlying this isotopic variability remain unclear. Differences in the kinetic isotope effects (KIEs) accompanying NADP + reduction by dehydrogenases and transhydrogenases have been hypothesized as a plausible mechanism. However, this relationship has been difficult to prove because multiple oxidoreductases affect the NADPH pool simultaneously. Here, we cultured five diverse aerobic heterotrophs, plus five Escherichia coli mutants, and used metabolic flux analysis to show that 2 H/ 1 H fractionations are highly correlated with more » fluxes through NADP + -reducing and NADPH-balancing reactions. Mass-balance calculations indicate that the full range of 2 H/ 1 H variability in the investigated organisms can be quantitatively explained by varying fluxes, i.e., with constant KIEs for each involved oxidoreductase across all species. This proves that lipid 2 H/ 1 H ratios of heterotrophic microbes are quantitatively related to central metabolism and provides a foundation for interpreting 2 H/ 1 H ratios of environmental lipids and sedimentary hydrocarbons. « less
Authors:
; ; ;
Award ID(s):
1529120
Publication Date:
NSF-PAR ID:
10237439
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
25
Page Range or eLocation-ID:
12173 to 12182
ISSN:
0027-8424
Sponsoring Org:
National Science Foundation
More Like this
  1. Plant productivity greatly relies on a flawless concerted function of the two photosystems (PS) in the chloroplast thylakoid membrane. While damage to PSII can be rapidly resolved, PSI repair is complex and time-consuming. A major threat to PSI integrity is acceptor side limitation e.g., through a lack of stromal NADP ready to accept electrons from PSI. This situation can occur when oscillations in growth light and temperature result in a drop of CO 2 fixation and concomitant NADPH consumption. Plants have evolved a plethora of pathways at the thylakoid membrane but also in the chloroplast stroma to avoid acceptor side limitation. For instance, reduced ferredoxin can be recycled in cyclic electron flow or reducing equivalents can be indirectly exported from the organelle via the malate valve, a coordinated effort of stromal malate dehydrogenases and envelope membrane transporters. For a long time, the NADP(H) was assumed to be the only nicotinamide adenine dinucleotide coenzyme to participate in diurnal chloroplast metabolism and the export of reductants via this route. However, over the last years several independent studies have indicated an underappreciated role for NAD(H) in illuminated leaf plastids. In part, it explains the existence of the light-independent NAD-specific malate dehydrogenase in themore »stroma. We review the history of the malate valve and discuss the potential role of stromal NAD(H) for the plant survival under adverse growth conditions as well as the option to utilize the stromal NAD(H) pool to mitigate PSI damage.« less
  2. We introduce EcH2O-iso, a new development of the physically-based, fully-distributed ecohydrological model EcH2O where the tracking of water isotopic tracers (2H and 18O) and age has been incorporated. EcH2O-iso is evaluated at a montane, low-energy experimental catchment in eastern Scotland using 16 independent isotope time series from various landscape positions and compartments; encompassing soil water, groundwater, stream water, and plant xylem. We find a good model-observation match in most cases, despite having only calibrated the model using hydrometric data and energy fluxes. These results provide further validation of the physical basis of the model for successfully capturing catchment hydrological functioning, both in terms of the celerity in energy propagation (e.g. runoff generation under prevailing hydraulic gradients) and flow velocities of water molecules (e.g., in consistent tracer concentrations at given locations and times). We also show that the spatially-distributed formulation of EcH2O-iso provides a powerful tool for quantitatively linking water stores and fluxes with spatio-temporal patterns of isotopes ratios and water ages. Finally, our study highlights some model development and benchmarking needs, refined using isotope-based calibration, for hypothesis testing and improved simulations of catchment dynamics that is transferable beyond the catchment landscape studied here.
  3. Small ponds account for a disproportionately high percentage of carbon dioxide emissions relative to their small surface area. It is therefore crucial to understand carbon flow in these ponds to refine the current global carbon budget, especially because climate change is affecting pond hydrology. High elevation ponds in the Elk Mountains of western Colorado are drying more frequently as the timing of snowmelt advances. We compared CO2 concentrations and fluxes among ponds of different hydroperiods over diel sampling periods during the course of the 2017 open-water period. CO2 concentrations were significantly negatively correlated with pond depth and averaged 77.6 ± 24.5 μmol L−1 (mean ± S.E.) across all ponds and sampling events. Ponds were up to twenty times supersaturated in CO2 with respect to the atmosphere. Flux was highly variable within individual ponds but correlated with time of sampling and was highest at night. Flux averaged 19.7 ± 18.8 mg CO2 m−2 h−1 across all ponds and sampling events. We also compared flux values obtained using modeled and empirical methods and found that widely-applied models of gas exchange rates using wind-based gas exchange (K) values yielded estimates of CO2 flux that were significantly higher than those obtained using the floating chamber approach, but estimates of CO2more »flux using globally averaged convection-based K values were lower than those obtained using the floating chambers. Lastly, we integrated soil vs. water efflux measurements with long-term patterns in hydrology to predict how total season-long efflux might change under the more rapid drying regimes and longer seasons that are already occurring in these systems. Because soil CO2 efflux averaged 277.0 ± 49.0 mg CO2 m−2 h−1, temporary ponds emitted 674.1 ± 99.4 kg CO2 m−2 over the course of the 2017 season from ice-out to refreezing, which was over twice as much as permanent and semi-permanent ponds. Our results emphasize that contributions of CO2 from small ponds to the global carbon budget estimates will vary with pond hydroperiod and sampling methodology, which have been overlooked given that most previous estimates were collected from limited sampling periods and from pond waters alone. Furthermore, pond CO2 contributions are predicted to increase over time as pond areas transition from efflux from water to efflux from soil.« less
  4. International Ocean Discovery Program Expedition 397T sought to address the shortage of drilling time caused by COVID-19 mitigation during Expedition 391 (Walvis Ridge Hotspot) by drilling at two sites omitted from the earlier cruise. A week of coring time was added to a transit of JOIDES Resolution from Cape Town to Lisbon, which would cross Walvis Ridge on its way north. These two sites were located on two of the three seamount trails that emerge from the split in Walvis Ridge morphology into several seamount chains at 2°E. Site U1584 (proposed Site GT-6A) sampled the Gough track on the east, and Site U1585 (proposed Site TT-4A) sampled the Tristan track on the west. Together with Site U1578, drilled on the Center track during Expedition 391, they form a transect across the northern Walvis Ridge Guyot Province. The goal was to core seamount basalts and associated volcanic material for geochemical and isotopic, geochronologic, paleomagnetic, and volcanologic study. Scientifically, one emphasis was to better understand the split in geochemical and isotopic signatures that occurs at the morphologic split. Geochronology would add to the established age progression but also give another dimension to understanding Walvis Ridge seamount formation by giving multiple ages atmore »the same sites. The paleomagnetic study seeks to establish paleolatitudes for Walvis Ridge sites for comparison with those published from hotspot seamount chains in the Pacific, in particular to test whether a component of true polar wander affects hotspot paleolatitude. Hole U1584A cored a 66.4 m thick sedimentary and volcaniclastic section with two lithostratigraphic units. Unit I is a 23 m thick sequence of bioturbated clay and nannofossil chalk with increasing volcaniclastic content downhole. Unit II is a >43 m thick sequence of lapillistone with basalt fragments. Because the seismic section crossing the site shows no evidence as to the depth of the volcaniclastic cover, coring was terminated early. Because there were no other shallow nearby sites with different character on existing seismic lines, the unused operations time from Site U1584 was shifted to the next site. The seismic reflector interpreted as the top of igneous rock at Site U1585 once again resulted from volcaniclastic deposits. Hole U1585A coring began at 144.1 mbsf and penetrated a 273.5 m thick sedimentary and volcaniclastic section atop a 81.2 m thick series of massive basalt flows. The hole was terminated at 498.8 mbsf because allotted operational time expired. The sedimentary section contains four main units. Unit I (144.1–157.02 mbsf) is a bioturbated nannofossil chalk with foraminifera, similar to the shallowest sediments recovered at Site U1584. Unit II (157.02–249.20 mbsf), which is divided into two subunits, is a 92.2 m thick succession of massive and bedded pumice and scoria lapillistone with increased reworking, clast alteration, and tuffaceous chalk intercalations downhole. Unit III (249.20–397.76 mbsf) is 148.6 m thick and consists of a complex succession of pink to greenish gray tuffaceous chalk containing multiple thin, graded ash turbidites and tuffaceous ash layers; intercalated tuffaceous chalk slumps; and several thick coarse lapilli and block-dominated volcaniclastic layers. Befitting the complexity, it is divided into eight subunits (IIIA–IIIH). Three of these subunits (IIIA, IIID, and IIIG) are mainly basalt breccias. Unit IV (397.76–417.60 mbsf) is a volcanic breccia, 19.8 m thick, containing mostly juvenile volcaniclasts. The igneous section, Unit V (417.60–498.80 mbsf) is composed of a small number of massive basaltic lava flows. It is divided into three lithologic units, with Unit 2 represented by a single 3 cm piece of quenched basalt with olivine phenocrysts in a microcrystalline groundmass. This piece may represent a poorly recovered set of pillow lavas. Unit 1 is sparsely to highly olivine-clinopyroxene ± plagioclase phyric massive basalt and is divided into Subunits 1a and 1b based on textural and mineralogical differences, which suggests that they are two different flows. Unit 3 also consists of two massive lava flows with no clear boundary features. Subunit 3a is a 10.3 m thick highly clinopyroxene-plagioclase phyric massive basalt flow with a fine-grained groundmass. Subunit 3b is a featureless massive basalt flow that is moderately to highly clinopyroxene-olivine-plagioclase phyric and >43.7 m thick. Alteration of the lava flows is patchy and moderate to low in grade, with two stages, one at a higher temperature and one at a low temperature, both focused around fractures. The Site U1585 chronologic succession from basalt flows to pelagic sediment indicates volcanic construction and subsidence. Lava eruptions were followed by inundation and shallow-water volcaniclastic sediment deposition, which deepened over time to deepwater conditions. Although the massive flows were probably erupted in a short time and have little variability, volcaniclasts in the sediments may provide geochemical and geochronologic data from a range of time and sources. Chemical analyses indicate that Site U1585 basalt samples are mostly alkalic basalt, with a few trachybasalt flow and clast samples and one basaltic trachyandesite clast. Ti/V ratios lie mostly within the oceanic island basalt (OIB) field but overlap the mid-ocean-ridge basalt (MORB) field. Only a handful of clasts from Site U1584 were analyzed, but geochemical data are similar. Paleomagnetic data from Site U1585 indicate that the sediments and basalt units are strongly magnetic and mostly give coherent inclination data, which indicates that the basaltic section and ~133 m of overlying volcaniclastic sediment is reversely polarized and that this reversal is preserved in a core. Above this, the rest of the sediment section records two normal and two reversed zones. Although there are not enough basalt flows to give a reliable paleolatitude, it may be possible to attain such a result from the sediments.« less
  5. Abstract. Plant activity in semi-arid ecosystems is largely controlled by pulses of precipitation, making them particularly vulnerable to increased aridity expected with climate change. Simple bucket-model hydrology schemes in land surface models (LSMs) have had limited ability in accurately capturing semi-arid water stores and fluxes. Recent, more complex, LSM hydrology models have not been widely evaluated against semi-arid ecosystem in situ data. We hypothesize that the failure of older LSM versions to represent evapotranspiration, ET, in arid lands is because simple bucket models do not capture realistic fluctuations in upper layer soil moisture. We therefore predict that including a discretized soil hydrology scheme based on a mechanistic description of moisture diffusion will result in an improvement in model ET when compared to data because the temporal variability of upper layer soil moisture content better corresponds to that of precipitation inputs. To test this prediction, we compared ORCHIDEE LSM simulations from (1) a simple conceptual 2-layer bucket scheme with fixed hydrological parameters; and (2) a 11-layer discretized mechanistic scheme of moisture diffusion in unsaturated soil based on Richards equations against daily and monthly soil moisture and ET observations, together with data-derived transpiration / evaporation, T / ET, ratios, from six semi-arid grass, shrub and forestmore »sites in the southwestern USA. The 11-layer scheme also has modified calculations of surface runoff, bare soil evaporation, and water limitation to be compatible with the more complex hydrology configuration. To diagnose remaining discrepancies in the 11-layer model, we tested two further configurations: (i) the addition of a term that captures bare soil evaporation resistance to dry soil; and (ii) reduced bare soil fraction. We found that the more mechanistic 11-layer model results better representation of the daily and monthly ET observations. We show that is likely because of improved simulation of soil moisture in the upper layers of soil (top 5 cm). Some discrepancies between observed and modelled soil moisture and ET may allow us to prioritize future model development. Adding a soil resistance term generally decreased simulated E and increased soil moisture content, thus increasing T and T / ET ratios and reducing the negative T / ET model-data bias. By reducing the bare soil fraction in the model, we illustrated that modelled leaf T is too low at sparsely vegetated sites. We conclude that a discretized soil hydrology scheme and associated developments improves estimates of ET by allowing the model to more closely match the pulse precipitation dynamics of these semi-arid ecosystems; however, the partitioning of T from bare soil evaporation is not solved by this modification alone.« less