Denitrification is a form of anaerobic respiration wherein nitrate (NO3-) is sequentially reduced via nitrite (NO2-), nitric oxide, and nitrous oxide (N2O) to dinitrogen gas (N2) by four reductase enzymes. Partial denitrifying bacteria possess only one, or some, of these four reductases and use them as independent respiratory modules. However, it is unclear if partial denitrifiers sense and respond to denitrification intermediates outside of their reductase repertoire. Here we tested the denitrifying capabilities of two purple nonsulfur bacteria, Rhodopseudomonas palustris CGA0092 and Rhodobacter capsulatus SB1003. Each had denitrifying capabilities that matched their genome annotation; CGA0092 reduced NO2- to N2 and SB1003 reduced N2O to N2. For each bacterium, N2O reduction could be used for both electron balance during growth on electron-rich organic compounds in light and for energy transformation via respiration in the dark. However, N2O reduction required supplementation with a denitrification intermediate, including those for which there was no associated denitrification enzyme. For CGA0092, NO3- served as a stable, non-catalyzable molecule that was sufficient to activate N2O reduction. Using a β-galactosidase reporter we found that NO3- acted, at least in part, by stimulating N2O reductase gene expression. In SB1003, NO2-, but not NO3-, activated N2O reduction but NO2- was slowly removed, likely by a promiscuous enzyme activity. Our findings reveal that partial denitrifiers can still be subject to regulation by denitrification intermediates that they cannot use.
more »
« less
QM/MM MD simulations reveal an asynchronous PCET mechanism for nitrite reduction by copper nitrite reductase
Nitrite reductases are enzymes that aid in the denitrification process by catalyzing the reduction of nitrite to nitric oxide gas. Since this reaction is the first committed step that involves gas formation, it is regarded to be a vital step for denitrification. However, the mechanism of copper-containing nitrite reductase is still under debate due to the discrepancy between the theoretical and experimental data, especially in terms of the roles of secondary shell residues Asp98 and His255 and the electron transfer mechanism between the two copper sites. Herein, we revisited the nitrite reduction mechanism of A. faecalis copper nitrite reductase using QM(B3LYP)/MM-based metadynamics. It is found that the intramolecular electron transfer from T1-Cu to T2-Cu occurs via an asynchronous proton-coupled electron transfer (PCET) mechanism, with electron transfer (ET) preceding proton transfer (PT). In particular, we found that the ET process is driven by the conformation conversion of Asp98 from the gatekeeper to the proximal one, which is much more energy-demanding than the PCET itself. These results highlight that the inclusion of an electron donor is vital to investigate electron-transfer related processes such as PCET.
more »
« less
- Award ID(s):
- 1904797
- PAR ID:
- 10237519
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 22
- Issue:
- 36
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 20922 to 20928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tyrosine residues act as intermediates in proton coupled electron transfer reactions (PCET) in proteins. For example, in ribonucleotide reductase (RNR), a tyrosyl radical oxidizes an active site cysteine via a 35 Å pathway that contains multiple aromatic groups. When singlet tyrosine is oxidized, the radical becomes a strong acid, and proton transfer reactions, which are coupled with the redox reaction, may be used to control reaction rate. Here, we characterize a tyrosine-containing beta hairpin, Peptide O, which has a cross-strand, noncovalent interaction between its single tyrosine, Y5, and a cysteine (C14). Circular dichroism provides evidence for a thermostable beta-turn. EPR spectroscopy shows that Peptide O forms a neutral tyrosyl radical after UV photolysis at 160 K. Molecular dynamics simulations support a phenolic/SH interaction in the tyrosine singlet and radical states. Differential pulse voltammetry exhibits pH dependence consistent with the formation of a neutral tyrosyl radical and a p K a change in two other residues. A redox-coupled decrease in cysteine p K a from 9 (singlet) to 6.9 (radical) is assigned. At pD 11, picosecond transient absorption spectroscopy after UV photolysis monitors tyrosyl radical recombination via electron transfer (ET). The ET rate in Peptide O is indistinguishable from the ET rates observed in peptides containing a histidine and a cyclohexylalanine (Cha) at position 14. However, at pD 9, the tyrosyl radical decays via PCET, and the decay rate is slowed, when compared to the histidine 14 variant. Notably, the decay rate is accelerated, when compared to the Cha 14 variant. We conclude that redox coupling between tyrosine and cysteine can act as a PCET control mechanism in proteins.more » « less
-
Bose, Arpita (Ed.)ABSTRACT Denitrification is a form of anaerobic respiration wherein nitrate (NO3−) is sequentially reduced via nitrite (NO2−), nitric oxide, and nitrous oxide (N2O) to dinitrogen gas (N2) by four reductase enzymes. Partial denitrifying bacteria possess only one or some of these four reductases and use them as independent respiratory modules. However, it is unclear if partial denitrifiers sense and respond to denitrification intermediates outside of their reductase repertoire. Here, we tested the denitrifying capabilities of two purple nonsulfur bacteria,Rhodopseudomonas palustrisCGA0092 andRhodobacter capsulatusSB1003. Each had denitrifying capabilities that matched their genome annotation; CGA0092 reduced NO2−to N2, and SB1003 reduced N2O to N2. For each bacterium, N2O reduction could be used both for electron balance during growth on electron-rich organic compounds in light and for energy transformation via respiration in darkness. However, N2O reduction required supplementation with a denitrification intermediate, including those for which there was no associated denitrification enzyme. For CGA0092, NO3−served as a stable, non-catalyzable molecule that was sufficient to activate N2O reduction. Using a β-galactosidase reporter, we found that NO3−acted, at least in part, by stimulating N2O reductase gene expression. In SB1003, NO2−but not NO3−activated N2O reduction, but NO2−was slowly removed, likely by a promiscuous enzyme activity. Our findings reveal that partial denitrifiers can still be subject to regulation by denitrification intermediates that they cannot use. IMPORTANCEDenitrification is a form of microbial respiration wherein nitrate is converted via several nitrogen oxide intermediates into harmless dinitrogen gas. Partial denitrifying bacteria, which individually have some but not all denitrifying enzymes, can achieve complete denitrification as a community by cross-feeding nitrogen oxide intermediates. However, the last intermediate, nitrous oxide (N2O), is a potent greenhouse gas that often escapes, motivating efforts to understand and improve the efficiency of denitrification. Here, we found that at least some partial denitrifying N2O reducers can sense and respond to nitrogen oxide intermediates that they cannot otherwise use. The regulatory effects of nitrogen oxides on partial denitrifiers are thus an important consideration in understanding and applying denitrifying bacterial communities to combat greenhouse gas emissions.more » « less
-
Role of extracellular electron transfer in the nitrogen cycleExtracellular electron transfer impacts the nitrogen cycle by enhancing microbial processes and connecting to other biogeochemical cycles. Understanding EET mechanisms provides insights into ecosystem functioning and potential advancements; Arpita Bose and Zhecheng (Robert) Zhang explain. Nitrogen is a fundamental element required by all living species. It can be found in amino acids, proteins, and nucleic acids. The nitrogen cycle promotes nitrogen transformation and transit across the environment, making it available for biological activity. Key steps in the cycle include nitrogen fixation (conversion of atmospheric nitrogen to ammonia), nitrification (oxidation of ammonia to nitrate), denitrification (reduction of nitrate to nitrogen gas), and anaerobic ammonium oxidation (anammox), which then converts ammonium and nitrite directly to nitrogen gas. Extracellular electron transfer (EET) is the mechanism by which microorganisms transmit electrons from their cells to accept electrons from external donors. This ability allows microorganisms to interact with insoluble substrates, which, in turn, influences a variety of biogeochemical cycles, including the nitrogen cycle. Understanding EET’s function sheds light on microbial ecology and environmental processes.more » « less
-
Nitric oxide (NO), produced by nitrite reductases or nitric oxide synthases, performs vital roles in signaling and the immune response. Iron sulfur (FeS) clusters are known targets for NO induced degradation, serving as sensors to trigger cellular responses. However, this FeS reactivity is proposed as NO specific, with no demonstrated reactivity toward nitrite, a soluble NO storage molecule. We demonstrate that synthetic FeS clusters supported by various ligands undergo facile nitrosylation by nitrite in the presence of a reductant, evidencing the nitrite reductase reactivity for FeS clusters. Moreover, a mononitrosylated Fe4S4 cluster, [tempS3Fe4S4(NO)]2–, can be readily synthesized by this approach, enabling further investigation into the FeS cluster repair and decomposition under NO induced oxidative stress.more » « less
An official website of the United States government

