skip to main content


Title: RELIC-FUN: Logic Identification through Functional Signal Comparisons
The ability to reverse engineer a hardware netlist in order to detect malicious logic has become an important problem in recent years. Much work has been done on algorithmically identifying structure and state in circuits; the first step of which is to separate control signals from data signals. The most current tools rely on topological comparisons of logic in order to identify signals which are uniquely structured in the netlist, as these signals are likely control signals. However, topological comparisons become less effective when a netlist has been resynthesized and optimized. We present a new tool, RELIC-FUN, based on netlist slicing and functional comparison of logic. Experimental results show that depending on netlist size, optimization, and control logic density, the proposed algorithm can be more accurate, and faster, than existing topological algorithms in many cases.  more » « less
Award ID(s):
1812071
NSF-PAR ID:
10237618
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
57th ACM/IEEE Design Automation Conference (DAC)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Assuring the quality and the trustworthiness of third party resources has been a hard problem to tackle. Researchers have shown that analyzing Integrated Circuits (IC), without the aid of golden models, is challenging. In this paper we discuss a toolset, NETA, designed to aid IP users in assuring the confidentiality, integrity, and accessibility of their IC or third party IP core. The discussed toolset gives access to a slew of gate-level analysis tools, many of which are heuristic-based, for the purposes of extracting high-level circuit design information. NETA majorly comprises the following tools: RELIC, REBUS, REPCA, REFSM, and REPATH. The first step involved in netlist analysis falls to signal classification. RELIC uses a heuristic based fan-in structure matcher to determine the uniqueness of each signal in the netlist. REBUS finds word groups by leveraging the data bus in the netlist in conjunction with RELIC's signal comparison through heuristic verification of input structures. REPCA on the other hand tries to improve upon the standard bruteforce RELIC comparison by leveraging the data analysis technique of PCA and a sparse RELIC analysis on all signals. Given a netlist and a set of registers, REFSM reconstructs the logic which represents the behavior of a particular register set over the course of the operation of a given netlist. REFSM has been shown useful for examining register interaction at a higher level. REPATH, similar to REFSM, finds a series of input patterns which forces a logical FSM initialize with some reset state into a state specified by the user. Finally, REFSM 2 is introduced to utilizes linear time precomputation to improve the original REFSM. 
    more » « less
  2. Abstract

    Ease of control of complex networks has been assessed extensively in terms of structural controllability and observability, and minimum control energy criteria. Here we adopt a sparsity-promoting feedback control framework for undirected networks with Laplacian dynamics and distinct topological features. The control objective considered is to minimize the effect of disturbance signals, magnitude of control signals and cost of feedback channels. We show that depending on the cost of feedback channels, different complex network structures become the least expensive option to control. Specifically, increased cost of feedback channels favors organized topological complexity such as modularity and centralization. Thus, although sparse and heterogeneous undirected networks may require larger numbers of actuators and sensors for structural controllability, networks with Laplacian dynamics are shown to be easier to control when accounting for the cost of feedback channels.

     
    more » « less
  3. The control of cryogenic qubits in today’s super-conducting quantum computer prototypes presents significant scalability challenges due to the massive costs of generating/routing the analog control signals that need to be sent from a classical controller at room temperature to the quantum chip inside the dilution refrigerator. Thus, researchers in industry and academia have focused on designing in-fridge classical controllers in order to mitigate these challenges. Due to the maturity of CMOS logic, many industrial efforts (Microsoft, Intel) have focused on Cryo-CMOS as a near-term solution to design in-fridge classical controllers. Meanwhile, Supercon-ducting Single Flux Quantum (SFQ) is an alternative, less mature classical logic family proposed for large-scale in-fridge controllers. SFQ logic has the potential to maximize scalability thanks to its ultra-high speed and very low power consumption. However, architecture design for SFQ logic poses challenges due to its unconventional pulse-driven nature and lack of dense memory and logic. Thus, research at the architecture level is essential to guide architects to design SFQ-based classical controllers for large-scale quantum machines.In this paper, we present DigiQ, the first system-level design of a Noisy Intermediate Scale Quantum (NISQ)-friendly SFQ-based classical controller. We perform a design space exploration of SFQ-based controllers and co-design the quantum gate decompositions and SFQ-based implementation of those decompositions to find an optimal SFQ-friendly design point that trades area and power for latency and control while ensuring good quantum algorithmic performance. Our co-design results in a single instruction, multiple data (SIMD) controller architecture, which has high scalability, but imposes new challenges on the calibration of control pulses. We present software-level solutions to address these challenges, which if unaddressed would degrade quantum circuit fidelity given the imperfections of qubit hardware.To validate and characterize DigiQ, we first implement it using hardware description languages and synthesize it using state-of-the-art/validated SFQ synthesis tools. Our synthesis results show that DigiQ can operate within the tight power and area budget of dilution refrigerators at >42,000-qubit scales. Second, we confirm the effectiveness of DigiQ in running quantum algorithms by modeling the execution time and fidelity of a variety of NISQ applications. We hope that the promising results of this paper motivate experimentalists to further explore SFQ-based quantum controllers to realize large-scale quantum machines with maximized scalability. 
    more » « less
  4. null (Ed.)
    Due to the globalization of semiconductor manufacturing and test processes, the system-on-a-chip (SoC) designers no longer design the complete SoC and manufacture chips on their own. This outsourcing of the design and manufacturing of Integrated Circuits (ICs) has resulted in several threats, such as overproduction of ICs, sale of out-of-specification/rejected ICs, and piracy of Intellectual Properties (IPs). Logic locking has emerged as a promising defense strategy against these threats. However, various attacks about the extraction of secret keys have undermined the security of logic locking techniques. Over the years, researchers have proposed different techniques to prevent existing attacks. In this article, we propose a novel attack that can break any logic locking techniques that rely on the stored secret key. This proposed TAAL attack is based on implanting a hardware Trojan in the netlist, which leaks the secret key to an adversary once activated. As an untrusted foundry can extract the netlist of a design from the layout/mask information, it is feasible to implement such a hardware Trojan. All three proposed types of TAAL attacks can be used for extracting secret keys. We have introduced the models for both the combinational and sequential hardware Trojans that evade manufacturing tests. An adversary only needs to choose one hardware Trojan out of a large set of all possible Trojans to launch the TAAL attack. 
    more » « less
  5. With the end of Dennard scaling, power constraints have led to increasing compute specialization in the form of differently specialized accelerators integrated at various levels of the general-purpose system hierarchy. The result is that the most common general-purpose computing platform is now a heterogeneous mix of architectures even within a single die. Consequently, mapping application code regions into available execution engines has become a challenge due to different interfaces and increased software complexity. At the same time, the energy costs of data movement have become increasingly dominant relative to computation energy. This has inspired a move towards data-centric systems, where computation is brought to data, in contrast to traditional processing-centric models. However, enabling compute nearer memory entails its own challenges, including the interactions between distance-specialization and compute-specialization. The granularity of any offload to near(er) memory logic would impact the potential data transmission reduction, as smaller offloads will not be able to amortize the transmission costs of invocation and data return, while very large offloads can only be mapped onto logic that can support all of the necessary operations within kernel-scale codes, which exacerbates both area and power constraints. For better energy efficiency, each set of related operations should be mapped onto the execution engine that, among those capable of running the set of operations, best balances the data movement and the degree of compute specialization of that engine for this code. Further, this offload should proceed in a decentralized way that keeps both the data and control movement low for all transitions among engines and transmissions of operands and results. To enable such a decentralized offload model, we propose an architecture interface that enables a common offload model for accelerators across the memory hierarchy and a tool chain to automatically identify (in a distance-aware fashion) and map profitable code regions on specialized execution engines. We evaluate the proposed architecture for a wide range of workloads and show energy reduction compared to an energy-efficient in-order core. We also demonstrate better area efficiency compared to kernel-scale offloads. 
    more » « less