Abstract Spin–orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy‐efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in‐plane magnetic switching. Unconventional spin–orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic‐based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin–orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin–orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy‐efficient magnetic switching in spintronic devices.
more »
« less
Topological insulators for efficient spin–orbit torques
Current-induced magnetic switching via spin–orbit torques has been extensively pursued for memory and logic applications with promising energy efficiency. Topological insulators are a group of materials with spin-momentum locked electronic states at the surface due to spin–orbit coupling, which can be harnessed to reach strong spin–orbit torques. In this paper, we summarize and compare the methods for calibrating the charge-spin conversion efficiency in topological insulators, with which topological insulators are identified as outstanding spin–orbit torque generators compared with the well-studied heavy metals. We then review the results of magnetic switching under reduced current density in topological insulator/ferromagnet heterostructures. Finally, we provide insights on current challenges as well as possible exploration directions in the emerging field of topological spintronics.
more »
« less
- Award ID(s):
- 1653553
- PAR ID:
- 10594606
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 9
- Issue:
- 6
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Topological insulators (TI) and magnetic topological insulators (MTI) can apply highly efficient spin‐orbit torque (SOT) and manipulate the magnetization with their unique topological surface states (TSS) with ultrahigh efficiency. Here, efficient SOT switching of a hard MTI, V‐doped (Bi,Sb)2Te3(VBST), with a large coercive field that can prevent the influence of an external magnetic field, is demonstrated. A giant switched anomalous Hall resistance of 9.2 kΩ is realized, among the largest of all SOT systems, which makes the Hall channel a good readout and eliminates the need to fabricate complicated magnetic tunnel junction (MTJ) structures. The SOT switching current density can be reduced to 2.8 × 105 A cm−2, indicating its high efficiency. Moreover, as the Fermi level is moved away from the Dirac point by both gate and composition tuning, VBST exhibits a transition from edge‐state‐mediated to surface‐state‐mediated transport, thus enhancing the SOT effective field to (1.56 ± 0.12) × 10−6 T A−1 cm2and the interfacial charge‐to‐spin conversion efficiency to 3.9 ± 0.3 nm−1. The findings establish VBST as an extraordinary candidate for energy‐efficient magnetic memory devices.more » « less
-
Abstract Giant spin-orbit torque (SOT) from topological insulators (TIs) provides an energy efficient writing method for magnetic memory, which, however, is still premature for practical applications due to the challenge of the integration with magnetic tunnel junctions (MTJs). Here, we demonstrate a functional TI-MTJ device that could become the core element of the future energy-efficient spintronic devices, such as SOT-based magnetic random-access memory (SOT-MRAM). The state-of-the-art tunneling magnetoresistance (TMR) ratio of 102% and the ultralow switching current density of 1.2 × 105 A cm−2have been simultaneously achieved in the TI-MTJ device at room temperature, laying down the foundation for TI-driven SOT-MRAM. The charge-spin conversion efficiencyθSHin TIs is quantified by both the SOT-induced shift of the magnetic switching field (θSH = 1.59) and the SOT-induced ferromagnetic resonance (ST-FMR) (θSH = 1.02), which is one order of magnitude larger than that in conventional heavy metals. These results inspire a revolution of SOT-MRAM from classical to quantum materials, with great potential to further reduce the energy consumption.more » « less
-
Materials with large spin–orbit interactions generate pure spin currents with spin polarizations parallel to the interfacial surfaces that give rise to conventional spin–orbit torques. These spin–orbit torques can only efficiently and deterministically switch magnets with in-plane magnetization. Additional symmetry breaking, such as in non-collinear antiferromagnets, can generate exotic, unconventional spin–orbit torques that are associated with spin polarizations perpendicular to the interfacial planes. Here, we use micromagnetic simulations to investigate whether such exotic spin–orbit torques can generate magnetic droplet solitions in out-of-plane magnetized geometries. We show that a short, high current pulse followed by a lower constant current can nucleate and stabilize magnetic droplets. Through specific current pulse lengths, it is possible to control the number of droplets in such a system, since torques are generated over a large area. Additionally, the nucleation current scales with the out-of-plane component of the spin polarization and is linear as a function of magnetic field strength.more » « less
-
Abstract Ultra-thin films of low damping ferromagnetic insulators with perpendicular magnetic anisotropy have been identified as critical to advancing spin-based electronics by significantly reducing the threshold for current-induced magnetization switching while enabling new types of hybrid structures or devices. Here, we have developed a new class of ultra-thin spinel structure Li0.5Al1.0Fe1.5O4(LAFO) films on MgGa2O4(MGO) substrates with: 1) perpendicular magnetic anisotropy; 2) low magnetic damping and 3) the absence of degraded or magnetic dead layers. These films have been integrated with epitaxial Pt spin source layers to demonstrate record low magnetization switching currents and high spin-orbit torque efficiencies. These LAFO films on MGO thus combine all of the desirable properties of ferromagnetic insulators with perpendicular magnetic anisotropy, opening new possibilities for spin based electronics.more » « less
An official website of the United States government
