For graphs G and H, we say that G is H-free if it does not contain H as an induced subgraph. Already in the early 1980s Alekseev observed that if H is connected, then the Max Weight Independent Set problem (MWIS) remains NP-hard in H-free graphs, unless H is a path or a subdivided claw, i.e., a graph obtained from the three-leaf star by subdividing each edge some number of times (possibly zero). Since then determining the complexity of MWIS in these remaining cases is one of the most important problems in algorithmic graph theory. A general belief is that the problem is polynomial-time solvable, which is witnessed by algorithmic results for graphs excluding some small paths or subdivided claws. A more conclusive evidence was given by the recent breakthrough result by Gartland and Lokshtanov [FOCS 2020]: They proved that MWIS can be solved in quasipolynomial time in H-free graphs, where H is any fixed path. If H is an arbitrary subdivided claw, we know much less: The problem admits a QPTAS and a subexponential-time algorithm [Chudnovsky et al., SODA 2019]. In this paper we make an important step towards solving the problem by showing that for any subdivided claw H, MWIS is polynomial-time solvable in H-free graphs of bounded degree.
more »
« less
Strongly perfect claw‐free graphs—A short proof
Abstract A graph isstrongly perfectif every induced subgraph of it has a stable set that meets every maximal clique of . A graph isclaw‐freeif no vertex has three pairwise nonadjacent neighbors. The characterization of claw‐free graphs that are strongly perfect by a set of forbidden induced subgraphs was conjectured by Ravindra in 1990 and was proved by Wang in 2006. Here we give a shorter proof of this characterization.
more »
« less
- Award ID(s):
- 1763817
- PAR ID:
- 10237672
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Graph Theory
- Volume:
- 97
- Issue:
- 3
- ISSN:
- 0364-9024
- Page Range / eLocation ID:
- p. 359-381
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the Maximum Independent Set problem we are asked to find a set of pairwise nonadjacent vertices in a given graph with the maximum possible cardinality. In general graphs, this classical problem is known to be NP-hard and hard to approximate within a factor of n1−ε for any ε > 0. Due to this, investigating the complexity of Maximum Independent Set in various graph classes in hope of finding better tractability results is an active research direction. In H-free graphs, that is, graphs not containing a fixed graph H as an induced subgraph, the problem is known to remain NP-hard and APX-hard whenever H contains a cycle, a vertex of degree at least four, or two vertices of degree at least three in one connected component. For the remaining cases, where every component of H is a path or a subdivided claw, the complexity of Maximum Independent Set remains widely open, with only a handful of polynomial-time solvability results for small graphs H such as P5, P6, the claw, or the fork. We prove that for every such “possibly tractable” graph H there exists an algorithm that, given an H-free graph G and an accuracy parameter ε > 0, finds an independent set in G of cardinality within a factor of (1 – ε) of the optimum in time exponential in a polynomial of log | V(G) | and ε−1. That is, we show that for every graph H for which Maximum Independent Set is not known to be APX-hard in H-free graphs, the problem admits a quasi-polynomial time approximation scheme in this graph class. Our algorithm works also in the more general weighted setting, where the input graph is supplied with a weight function on vertices and we are maximizing the total weight of an independent set.more » « less
-
We give a combinatorial polynomial-time algorithm to find a maximum weight independent set in perfect graphs of bounded degree that do not contain a prism or a hole of length four as an induced subgraph. An even pair in a graph is a pair of vertices all induced paths between which are even. An even set is a set of vertices every two of which are an even pair. We show that every perfect graph that does not contain a prism or a hole of length four as an induced subgraph has a balanced separator which is the union of a bounded number of even sets, where the bound depends only on the maximum degree of the graph. This allows us to solve the maximum weight independent set problem using the well-known submodular function minimization algorithm. Funding: This work was supported by the Engineering and Physical Sciences Research Council [Grant EP/V002813/1]; the National Science Foundation [Grants DMS-1763817, DMS-2120644, and DMS-2303251]; and Alexander von Humboldt-Stiftung.more » « less
-
null (Ed.)The claw is the graph $$K_{1,3}$$, and the fork is the graph obtained from the claw $$K_{1,3}$$ by subdividing one of its edges once. In this paper, we prove a structure theorem for the class of (claw, $$C_4$$)-free graphs that are not quasi-line graphs, and a structure theorem for the class of (fork, $$C_4$$)-free graphs that uses the class of (claw, $$C_4$$)-free graphs as a basic class. Finally, we show that every (fork, $$C_4$$)-free graph $$G$$ satisfies $$\chi(G)\leqslant \lceil\frac{3\omega(G)}{2}\rceil$$ via these structure theorems with some additional work on coloring basic classes.more » « less
-
Beyersdorff, Olaf; Kanté, Mamadou Moustapha; Kupferman, Orna; Lokshtanov, Daniel (Ed.)We revisit the recent polynomial-time algorithm for the Max Weight Independent Set (MWIS) problem in bounded-degree graphs that do not contain a fixed graph whose every component is a subdivided claw as an induced subgraph [Abrishami, Chudnovsky, Dibek, Rzążewski, SODA 2022]. First, we show that with an arguably simpler approach we can obtain a faster algorithm with running time n^{𝒪(Δ²)}, where n is the number of vertices of the instance and Δ is the maximum degree. Then we combine our technique with known results concerning tree decompositions and provide a polynomial-time algorithm for MWIS in graphs excluding a fixed graph whose every component is a subdivided claw as an induced subgraph, and a fixed biclique as a subgraph.more » « less
An official website of the United States government
