skip to main content


Title: Distance‐Dependent Electron Transfer Kinetics in Axially Connected Silicon Phthalocyanine‐Fullerene Conjugates
Abstract

The effect of donor‐acceptor distance in controlling the rate of electron transfer in axially linked silicon phthalocyanine‐C60dyads has been investigated. For this, two C60‐SiPc‐C60dyads,1and2, varying in their donor‐acceptor distance, have been newly synthesized and characterized. In the case of C60‐SiPc‐C601where the SiPc and C60are separated by a phenyl spacer, faster electron transfer was observed withkcsequal to 2.7×109 s−1in benzonitrile. However, in the case of C60‐SiPc‐C602, where SiPc and C60are separated by a biphenyl spacer, a slower electron transfer rate constant,kcs=9.1×108 s−1, was recorded. The addition of an extra phenyl spacer in2increased the donor‐acceptor distance by ∼4.3 Å, and consequently, slowed down the electron transfer rate constant by a factor of ∼3.7. The charge separated state lasted over 3 ns, monitoring time window of our femtosecond transient spectrometer. Complimentary nanosecond transient absorption studies revealed formation of3SiPc* as the end product and suggested the final lifetime of the charge separated state to be in the 3–20 ns range. Energy level diagrams established to comprehend these mechanistic details indicated that the comparatively high‐energy SiPc.+‐C60.−charge separated states (1.57 eV) populated the low‐lying3SiPc* (1.26 eV) prior returning to the ground state.

 
more » « less
NSF-PAR ID:
10237870
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPhysChem
Volume:
21
Issue:
20
ISSN:
1439-4235
Page Range / eLocation ID:
p. 2254-2262
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A high potential donor–acceptor dyad composed of zinc porphyrin bearing threemeso‐pentafluorophenyl substituents covalently linked to C60, as a novel dyad capable of generating charge‐separated states of high energy (potential) has been developed. The calculated energy of the charge‐separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin–fullerene dyad. Intramolecular photoinduced electron transfer leading to charge‐separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto‐ to nanosecond transient absorption techniques. The high energy stored in the form of charge‐separated states along with its persistence of about 50–60 ns makes this dyad a potential electron‐transporting catalyst to carry out energy‐demanding photochemical reactions. This type of high‐energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light‐to‐fuel products.

     
    more » « less
  2. Abstract

    A panchromatic triad, consisting of benzothiazole (BTZ) and BF2‐chelated boron‐dipyrromethene (BODIPY) moieties covalently linked to a zinc porphyrin (ZnP) core, has been synthesized and systematically characterized by using1H NMR spectroscopy, ESI‐MS, UV‐visible, steady‐state fluorescence, electrochemical, and femtosecond transient absorption techniques. The absorption band of the triad, BTZ‐BODIPY‐ZnP, and dyads, BTZ‐BODIPY and BODIPY‐ZnP, along with the reference compounds BTZ‐OMe, BODIPY‐OMe, and ZnP‐OMe exhibited characteristic bands corresponding to individual chromophores. Electrochemical measurements on BTZ‐BODIPY‐ZnP exhibited redox behavior similar to that of the reference compounds. Upon selective excitation of BTZ (≈290 nm) in the BTZ‐BODIPY‐ZnP triad, the fluorescence of the BTZ moiety is quenched, due to photoinduced energy transfer (PEnT) from1BTZ*to the BODIPY moiety, followed by quenching of the BODIPY emission due to sequential PEnT from the1BODIPY* moiety to ZnP, resulting in the appearance of the ZnP emission, indicating the occurrence of a two‐step singlet–singlet energy transfer. Further, a supramolecular tetrad, BTZ‐BODIPY‐ZnP:ImC60, was formed by axially coordinating the triad with imidazole‐appended fulleropyrrolidine (ImC60), and parallel steady‐state measurements displayed the diminished emission of ZnP, which clearly indicated the occurrence of photoinduced electron transfer (PET) from1ZnP* to ImC60. Finally, femtosecond transient absorption spectral studies provided evidence for the sequential occurrence of PEnT and PET events, namely,1BTZ*‐BODIPY‐ZnP:ImC60→BTZ‐1BODIPY*‐ZnP:ImC60→BTZ‐BODIPY‐1ZnP*:ImC60→BTZ‐BODIPY‐ZnP.+:ImC60.−in the supramolecular tetrad. The evaluated rate of energy transfer,kEnT, was found to be 3–5×1010 s−1, which was slightly faster than that observed in the case of BODIPY‐ZnP and BTZ‐BODIPY‐ZnP, lacking the coordinated ImC60. The rate constants for charge separation and recombination,kCSandkCR, respectively, calculated by monitoring the rise and decay of C60.−were found to be 5.5×1010and 4.4×108 s−1, respectively, for the BODIPY‐ZnP:ImC60triad, and 3.1×1010and 4.9×108 s−1, respectively, for the BTZ‐BODIPY‐ZnP:ImC60tetrad. Initial excitation of the tetrad, promoting two‐step energy transfer and a final electron‐transfer event, has been successfully demonstrated in the present study.

     
    more » « less
  3. Abstract

    Two wide‐band‐capturing donor‐acceptor conjugates featuring bis‐styrylBODIPY and perylenediimide (PDI) have been newly synthesized, and the occurrence of ultrafast excitation transfer from the1PDI* to BODIPY, and a subsequent electron transfer from the1BODIPY* to PDI have been demonstrated. Optical absorption studies revealed panchromatic light capture but offered no evidence of ground‐state interactions between the donor and acceptor entities. Steady‐state fluorescence and excitation spectral recordings provided evidence of singlet‐singlet energy transfer in these dyads, and quenched fluorescence of bis‐styrylBODIPY emission in the dyads suggested additional photo‐events. The facile oxidation of bis‐styrylBODIPY and facile reduction of PDI, establishing their relative roles of electron donor and acceptor, were borne out by electrochemical studies. The electrostatic potential surfaces of the S1and S2states, derived from time‐dependent DFT calculations, supported excited charge transfer in these dyads. Spectro‐electrochemical studies on one‐electron‐oxidized and one‐electron‐reduced dyads and the monomeric precursor compounds were also performed in a thin‐layer optical cell under corresponding applied potentials. From this study, both bis‐styrylBODIPY⋅+and PDI⋅could be spectrally characterizes and were subsequently used in characterizing the electron‐transfer products. Finally, pump–probe spectral studies were performed in dichlorobenzene under selective PDI and bis‐styrylBODIPY excitation to secure energy and electron‐transfer evidence. The measured rate constants for energy transfer,kENT, were in the range of 1011 s−1, while the electron transfer rate constants,kET, were in the range of 1010 s−1, thus highlighting their potential use in solar energy harvesting and optoelectronic applications.

     
    more » « less
  4. Abstract

    Photoinduced electron transfer (PET) in newly assembled dyads formedviametal‐ligand axial coordination of phenylimidazole‐functionalized bis(styryl)BODIPY (BODIPY(Im)2) and zinc tetrapyrroles, that is, zinc tetratolylporphyrin (ZnP), zinc tetra‐t‐butyl phthalocyanine (ZnPc) and zinc tetra‐t‐butyl naphthalocyanine (ZnNc), in non‐coordinatingo‐dichlorobenzene (DCB) is investigated using both steady‐state and time‐resolved transient absorption techniques. The structure of the BODIPY(Im)2was identified by using single crystal X‐ray structural analysis. The newly formed supramolecular dyads were fully characterized by spectroscopic, computational and electrochemical methods. The binding constants measured from optical absorption spectral studies were in the range of ∼104 M−1for the first zinc tetrapyrrole binding and suggested that the two imidazole entities of bis(styryl)BODIPY behave independently in the binding process. The energy level diagram established using spectral and electrochemical studies suggested PET to be thermodynamically unfavorable in the ZnP‐bearing complex while for ZnPc‐ and ZnNc‐bearing complexes such a process is possible when zinc tetrapyrrole is selectively excited. Consequently, occurrence of efficient PET in the latter two dyads was possible to establish from femtosecond transient absorption studies wherein the electron transfer products, that is, the radical cation of zinc tetrapyrrole and the radical anion of BODIPY(Im)2, was possible to spectrally identify. From target analysis of the transient data, time constants of circa 3 ns for ZnPc⋅+:BODIPY⋅and circa 0.5 ns for ZnNc⋅+:BODIPY⋅were obtained indicating persistence of the radical ion‐pair to some extent. The electron acceptor property of bis(styryl)BODIPY in donor‐acceptor conjugates is borne out from the present study.

     
    more » « less
  5. Abstract

    BF2‐chelated dipyrromethene, BODIPY, was functionalized to carry two styryl crown ether tails and a secondary electron donor at themesoposition. By using a “two‐point” self‐assembly strategy, a bis‐alkylammonium‐functionalized fullerene (C60) was allowed to self‐assemble the crown ether voids of BODIPY to obtain multimodular donor–acceptor conjugates. As a consequence of the two‐point binding, the 1:1 stoichiometric complexes formed yielded complexes of higher stability in which fluorescence of BODIPY was found to be quenched; this suggested the occurrence of excited‐state processes. The geometry and electronic structure of the self‐assembled complexes were derived from B3LYP/3‐21G(*) methods in which no steric constraints between the entities was observed. An energy‐level diagram was established by using spectral, electrochemical, and computational results to help understand the mechanistic details of excited‐state processes originating from1bis‐styryl‐BODIPY*. Femtosecond transient absorbance studies were indicative of the formation of an exciplex state prior to the charge‐separation process to yield a bis‐styryl‐BODIPY.+–C60.radical ion pair. The time constants for charge separation were generally lower than charge‐recombination processes. The present studies bring out the importance of multimode binding strategies to obtain stable self‐assembled donor–acceptor conjugates capable of undergoing photoinduced charge separation needed in artificial photosynthetic applications.

     
    more » « less