This study expands and combines concepts from two of our earlier studies. One study reported the complementary halogen bonding and π-π charge transfer complexation observed between isomeric electron rich 4-N,N-dimethylaminophenylethynylpyridines and the electron poor halogen bond donor, 1-(3,5-dinitrophenylethynyl)-2,3,5,6-tetrafluoro-4-iodobenzene while the second study elaborated the ditopic halogen bonding of activated pyrimidines. Leveraging our understanding on the combination of these non-covalent interactions, we describe cocrystallization featuring ditopic halogen bonding and π-stacking. Specifically, red cocrystals are formed between the ditopic electron poor halogen bond donor 1-(3,5-dinitrophenylethynyl)-2,4,6-triflouro-3,5-diiodobenzene and each of electron rich pyrimidines 2- and 5-(4-N,N-dimethyl-aminophenylethynyl)pyrimidine. The X-ray single crystal structures of these cocrystals are described in terms of halogen bonding and electron donor-acceptor π-complexation. Computations confirm that the donor-acceptor π-stacking interactions are consistently stronger than the halogen bonding interactions and that there is cooperativity between π-stacking and halogen bonding in the crystals.
more »
« less
Arylethynyl Helices Supported by π‐Stacking and Halogen Bonding
Abstract Co‐crystallization of a pyridyl‐containing arylethynyl (AE) moiety with 1,4‐diiodotetrafluorobenzene leads to unique, figure‐eight shaped helical motifs within the crystal lattice. A slight twist in the AE backbone allows each AE unit to simultaneously interact with haloarene units that are stacked on top of one another. Left‐handed (M) and right‐handed (P) helices are interspersed in a regular pattern throughout the crystal. The major driving forces for assembly are 1) halogen bonding between the pyridyl nitrogen atoms and the iodine substituents of the haloarene, with N⋅⋅⋅I distances between 2.81 and 2.84 Å, and 2) π‐π stacking of the haloarenes, with distances of approximately 3.57 Å between centroids. Halogen bonding and π‐π stacking not only work in concert, but also seem to mutually enhance one another. Calculations suggest that the presence of π‐π stacking modestly intensifies the halogen bonding interaction by <0.2 kcal/mol; likewise, halogen bonding to the haloarene enhances the π‐π stacking interaction by 0.59 kcal/mol.
more »
« less
- PAR ID:
- 10237901
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPlusChem
- Volume:
- 86
- Issue:
- 5
- ISSN:
- 2192-6506
- Format(s):
- Medium: X Size: p. 745-749
- Size(s):
- p. 745-749
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Halogen bonding (XB) has emerged as an important bonding motif in supramolecules and biological systems. Although regarded as a strong noncovalent interaction, benchmark measurements of the halogen bond energy are scarce. Here, a combined anion photoelectron spectroscopy and density functional theory (DFT) study of XB in solvated Br−anions is reported. The XB strength between the positively‐charged σ‐hole on the Br atom of the bromotrichloromethane (CCl3Br) molecule and the Br−anion was found to be 0.63 eV (14.5 kcal mol−1). In the neutral complexes, Br(CCl3Br)1,2, the attraction between the free Br atom and the negatively charged equatorial belt on the Br atom of CCl3Br, which is a second type of halogen bonding, was estimated to have interaction strengths of 0.15 eV (3.5 kcal mol−1) and 0.12 eV (2.8 kcal mol−1).more » « less
-
A series of aromatic organic molecules functionalized with different halogen atoms (I/ Br), motion-capable groups (olefin, azo or imine) and molecular length were designed and synthesized. The molecules self-assemble in the solid state through halogen bonding and exhibit molecular packing sustained by either herringbone or face-to-face π-stacking, two common motifs in organic semiconductor molecules. Interestingly, dynamic pedal motion is only achieved in solids with herringbone packing. On average, solids with herringbone packing exhibit larger thermal expansion within the halogen-bonded sheets due to motion occurrence and molecular twisting, whereas molecules with face-to-face π-stacking do not undergo motion or twisting. Thermal expansion along the π-stacked direction is surprisingly similar, but slightly larger for the face-to-face π-stacked solids due to larger changes in π-stacking distances with temperature changes. The results speak to the importance of crystal packing and intermolecular interaction strength when designing aromatic-based solids for organic electronics applications.more » « less
-
Abstract The starting point for this work was a set of crystal structures containing the motif of interaction between methyl groups in homodimers. Two structures were selected for which QTAIM, NCI and NBO analyses suggested an attractive interaction. However, the calculated interaction energy was negative for only one of these systems. The ability of methyl groups to interact with one another is then examined by DFT calculations. A series of (CH3PnHCH3)2homodimers were allowed to interact with each other for a range of Pn atoms N, P, As, and Sb. Interaction energies of these C⋅⋅⋅C tetrel‐bonded species were below 1 kcal/mol, but could be raised to nearly 3 kcal/mol if the C atom was changed to a heavier tetrel. A strengthening of the C⋅⋅⋅C intermethyl bonds can also be achieved by introducing an asymmetry via an electron‐withdrawing substituent on one unit and a donor on the other. The attractions between the methyl and related groups occur in spite of a coulombic repulsion between σ‐holes on the two groups. NBO, AIM, and NCI tools must be interpreted with caution as they can falsely suggest bonding when the potentials are repulsive.more » « less
-
Abstract The propensity of the π‐electron system lying above a polycyclic aromatic system to engage in a halogen bond is examined by DFT calculations. Prototype Lewis acid CF3I is placed above the planes of benzene, naphthalene, anthracene, phenanthrene, naphthacene, chrysene, triphenyl, pyrene, and coronene. The I atom positions itself some 3.3–3.4 Å above the polycyclic plane, and the associated interaction energy is about 4 kcal/mol. This quantity is a little smaller for benzene, but is roughly equal for the larger polycyclics. The energy only oscillates a little as the Lewis acid slides across the face of the polycyclic, preferring regions of higher π‐electron density over minima of the electrostatic potential. The binding is dominated by dispersion which contributes half of the total interaction energy.more » « less
An official website of the United States government
