skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: MC3T3 E1 cell response to mineralized nanofiber shish kebab structures
Abstract

Block copolymers (BCPs) are of growing interest because of their extensive utility in tissue engineering, particularly in biomimetic approaches where multifunctionality is critical. We synthesized polycaprolactone‐polyacrylic acid (PCL‐b‐PAA) BCP and crystallized it onto PCL nanofibers, making BCP nanofiber shish kebab (BCP NFSK) structures. When mineralized in 2× simulated body fluid, BCP NFSK mimic the structure of mineralized collagen fibrils. We hypothesized that the addition of a calcium phosphate layer of graded roughness on the nano‐structure of the nanofiber shish kebabs would enhance preosteoblast alkaline phosphatase (ALP) activity, which has been shown to be a critical component in bone matrix formation. The objectives in the study were to investigate the effect of mineralization on cell proliferation and ALP activity, and to also investigate the effect of BCP NFSK periodicity, a structural feature describing the distance between PCL‐b‐PAA crystals on the nanofiber core, on cell proliferation, and ALP activity. ALP activity of cells cultured on the mineralized BCP NFSK template was significantly higher than the nonmineralized BCP NFSK templates. Interestingly, no statistical difference was observed in ALP activity when the periodic varied, indicating that surface chemistry seemed to play a larger role than the surface roughness.

 
more » « less
NSF-PAR ID:
10238584
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part B: Applied Biomaterials
Volume:
109
Issue:
10
ISSN:
1552-4973
Page Range / eLocation ID:
p. 1601-1610
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electrospinning of nanofiber is of growing interest especially in bone tissue engineering because of its similar fibrous properties to the extracellular matrix. To this end, we have fabricated polycaprolactone (PCL) nanofiber shish kebab (NFSK) templates. The novelty of this work is the ability to control the mineral orientation and spatial location on the nanofiber, mimicking natural collagen fibers. However, NFSK templates have properties that need to be investigated in terms of cellular response including fiber alignment and crystallization. In this study, MC3T3 E1 preosteoblast cells were seeded onto the templates to determine the effect of both fiber orientation and kebab size on the cell metabolic activity. PCL was electrospun to form aligned and randomly oriented nanofibers, which were then crystallized in a PCL solution in pentyl acetate for 15 and 60 min, resulting in the formation of homopolymer PCL NFSK templates. We evaluated the cell proliferation and alkaline phosphatase activity of MC3T3 E1 cells after 3, 7, and 14 days in coculture. Aligned nanofiber and polymer crystallization both significantly increased the cell proliferation and alkaline phosphatase activity at each time point. The aligned nanofibers and polymer crystallization resulted in the highest metabolic activities of the cells compared to the randomly oriented fibers and noncrystallized controls. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1141–1149, 2019.

     
    more » « less
  2. Abstract

    Nanofibers made by blending natural and synthetic biopolymers have shown promise for better mechanical stability, ECM morphology mimicry, and cellular interaction of such materials. With the evolution of production methods of nanofibers, alternating field electrospinning (a.k.a. alternating current (AC) electrospinning) demonstrates a strong potential for scalable and sustainable fabrication of nanofibrous materials. This study focuses on AC‐electrospinning of poorly miscible blends of gelatin from cold water fish skin (FGEL) and polycaprolactone (PCL) in a range of FGEL/PCL mass ratios from 0.9:0.1 to 0.4:0.6 in acetic acid single‐solvent system. The nanofiber productivity rates of 7.8–19.0 g/h were obtained using a single 25 mm diameter dish‐like spinneret, depending on the precursor composition. The resulting nanofibrous meshes had 94%–96% porosity and revealed the nanofibers with 200–750 nm diameters and smooth surface morphology. The results of FTIR, XRD, and water contact angle analyses have shown the effect of FGEL/PCL mass ratio on the changes in the material wettability, PCL crystallinity and orientation of PCL crystalline regions, and secondary structure of FGEL in as‐spun and thermally crosslinked materials. Preliminary in vitro tests with 3 T3 mouse fibroblasts confirmed favorable and tunable cell attachment, proliferation, and spreading on all tested FGEL/PCL nanofibrous meshes.

     
    more » « less
  3. Abstract

    Electrospinning is considered a powerful method for the production of fibers in the nanoscale size. Small pore size results in poor cell infiltration, cell migration inhibition into scaffold pores and low oxygen diffusion. Electrospun polycaprolactone/gelatin/nano‐hydroxyapatite (PCL/Gel/nHA) scaffolds were deposited into two types of fiber collectors (novel rotating disc and plate) to study fiber morphology, chemical, mechanical, hydrophilic, and biodegradation properties between each other. The proliferation and differentiation of MG‐63 cells into the bone phenotype were determined using MTT method, alizarin red staining and alkaline phosphatase (ALP) activity. The rates for disc rotation were 50 and 100 rpm. The pore size measurement results indicated that the fibers produced by the disc rotation collector with speed rate 50 rpm have larger pores as compared to fibers produced by disc rotation at 100 rpm and flat plate collectors. A randomly structure with controlled pore size (38.65 ±0.33 μm) and lower fiber density, as compared to fibers collected by disc rotation with speed rate 100 rpm and flat plate collectors, was obtained. Fibers collected on the rotating disc with speed rate 50 rpm, were more hydrophilic due to larger pore size and therefore, faster infiltration of water into the scaffold and the rate of degradation was higher. These results demonstrate that PCL/Gel/nHA scaffolds made through a rotating disc collector at 50 rpm are more feasible to be used in bone tissue engineering applications due to appropriate pore size and increased adhesion and proliferation of cells, ALP activity and mineral deposits. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 933–950, 2019.

     
    more » « less
  4. Abstract

    Critical‐sized defects remain a significant challenge in orthopaedics. 3D printed scaffolds are a promising treatment but are still limited due to inconsistent osseous integration. The goal of the study is to understand how changing the surface roughness of 3D printed titanium either by surface treatment or artificially printing rough topography impacts the mechanical and biological properties of 3D printed titanium. Titanium tensile samples and discs were printed via laser powder bed fusion. Roughness was manipulated by post‐processing printed samples or by directly printing rough features. Experimental groups in order of increasing surface roughness were Polished, Blasted, As Built, Sprouts, and Rough Sprouts. Tensile behavior of samples showed reduced strength with increasing surface roughness. MC3T3 pre‐osteoblasts were seeded on discs and analyzed for cellular proliferation, differentiation, and matrix deposition at 0, 2, and 4 weeks. Printing roughness diminished mechanical properties such as tensile strength and ductility without clear benefit to cell growth. Roughness features were printed on mesoscale, unlike samples in literature in which roughness on microscale demonstrated an increase in cell activity. The data suggest that printing artificial roughness on titanium scaffold is not an effective strategy to promote osseous integration.

     
    more » « less
  5. Abstract

    Repairing large tissue defects often represents a great challenge in clinics due to issues regarding lack of donors, mismatched sizes, irregular shapes, and immune rejection. 3D printed scaffolds are attractive for growing cells and producing tissue constructs because of the intricate control over pore size, porosity, and geometric shape, but the lack of biomimetic surface nanotopography and limited biomolecule presenting capacity render them less efficacious in regulating cell responses. Herein, a facile method for coating 3D printed scaffolds with electrospun nanofiber segments is reported. The surface morphology of modified 3D scaffolds changes dramatically, displaying a biomimetic nanofibrous structure, while the bulk mechanical property, pore size, and porosity are not significantly compromised. The short nanofibers‐decorated 3D printed scaffolds significantly promote adhesion and proliferation of pre‐osteoblasts and bone marrow mesenchymal stem cells (BMSCs). Further immobilization of bone morphogenetic protein‐2 mimicking peptides to nanofiber segments‐decorated 3D printed scaffolds show enhanced mRNA expressions of osteogenic markers Runx2, Alp, OCN, and BSP in BMSCs, indicating the enhancement of BMSCs osteogenic differentiation. Together, the combination of 3D printing and electrospinning is a promising approach to greatly expand the functions of 3D printed scaffolds and enhance the efficacy of 3D printed scaffolds for tissue engineering.

     
    more » « less