skip to main content


Title: Visual short‐term memory for high resolution associations is impaired in patients with medial temporal lobe damage
ABSTRACT

The medial temporal lobe (MTL) plays a critical role in episodic long‐term memory, but whether the MTL is necessary for visual short‐term memory is controversial. Some studies have indicated that MTL damage disrupts visual short‐term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short‐term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short‐term memory in patients with damage to the MTL and controls for high resolution and low resolution object‐location and object‐color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two‐alternative forced‐choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short‐term memory, but importantly, they were more impaired for high resolution object‐location and object‐color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc.

 
more » « less
NSF-PAR ID:
10238671
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hippocampus
Volume:
27
Issue:
2
ISSN:
1050-9631
Page Range / eLocation ID:
p. 184-193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The medial temporal lobe (MTL) is traditionally considered to be a system that is specialized for long-term memory. Recent work has challenged this notion by demonstrating that this region can contribute to many domains of cognition beyond long-term memory, including perception and attention. One potential reason why the MTL (and hippocampus specifically) contributes broadly to cognition is that it contains relational representations—representations of multidimensional features of experience and their unique relationship to one another—that are useful in many different cognitive domains. Here, we explore the hypothesis that the hippocampus/MTL plays a critical role in attention and perception via relational representations. We compared human participants with MTL damage to healthy age- and education-matched individuals on attention tasks that varied in relational processing demands. On each trial, participants viewed two images (rooms with paintings). On “similar room” trials, they judged whether the rooms had the same spatial layout from a different perspective. On “similar art” trials, they judged whether the paintings could have been painted by the same artist. On “identical” trials, participants simply had to detect identical paintings or rooms. MTL lesion patients were significantly and selectively impaired on the similar room task. This work provides further evidence that the hippocampus/MTL plays a ubiquitous role in cognition by virtue of its relational and spatial representations and highlights its important contributions to rapid perceptual processes that benefit from attention. 
    more » « less
  2. The human medial temporal lobe (MTL) plays a crucial role in recognizing visual objects, a key cognitive function that relies on the formation of semantic representations. Nonetheless, it remains unknown how visual information of general objects is translated into semantic representations in the MTL. Furthermore, the debate about whether the human MTL is involved in perception has endured for a long time. To address these questions, we investigated three distinct models of neural object coding—semantic coding, axis-based feature coding, and region-based feature coding—in each subregion of the MTL, using high-resolution fMRI in two male and six female participants. Our findings revealed the presence of semantic coding throughout the MTL, with a higher prevalence observed in the parahippocampal cortex (PHC) and perirhinal cortex (PRC), while axis coding and region coding were primarily observed in the earlier regions of the MTL. Moreover, we demonstrated that voxels exhibiting axis coding supported the transition to region coding and contained information relevant to semantic coding. Together, by providing a detailed characterization of neural object coding schemes and offering a comprehensive summary of visual coding information for each MTL subregion, our results not only emphasize a clear role of the MTL in perceptual processing but also shed light on the translation of perception-driven representations of visual features into memory-driven representations of semantics along the MTL processing pathway.

    Significance StatementIn this study, we delved into the mechanisms underlying visual object recognition within the human medial temporal lobe (MTL), a pivotal region known for its role in the formation of semantic representations crucial for memory. In particular, the translation of visual information into semantic representations within the MTL has remained unclear, and the enduring debate regarding the involvement of the human MTL in perception has persisted. To address these questions, we comprehensively examined distinct neural object coding models across each subregion of the MTL, leveraging high-resolution fMRI. We also showed transition of information between object coding models and across MTL subregions. Our findings significantly contributes to advancing our understanding of the intricate pathway involved in visual object coding.

     
    more » « less
  3. null (Ed.)
    A degraded, black-and-white image of an object, which appears meaningless on first presentation, is easily identified after a single exposure to the original, intact image. This striking example of perceptual learning reflects a rapid (one-trial) change in performance, but the kind of learning that is involved is not known. We asked whether this learning depends on conscious (hippocampus-dependent) memory for the images that have been presented or on an unconscious (hippocampus-independent) change in the perception of images, independently of the ability to remember them. We tested five memory-impaired patients with hippocampal lesions or larger medial temporal lobe (MTL) lesions. In comparison to volunteers, the patients were fully intact at perceptual learning, and their improvement persisted without decrement from 1 d to more than 5 mo. Yet, the patients were impaired at remembering the test format and, even after 1 d, were impaired at remembering the images themselves. To compare perceptual learning and remembering directly, at 7 d after seeing degraded images and their solutions, patients and volunteers took either a naming test or a recognition memory test with these images. The patients improved as much as the volunteers at identifying the degraded images but were severely impaired at remembering them. Notably, the patient with the most severe memory impairment and the largest MTL lesions performed worse than the other patients on the memory tests but was the best at perceptual learning. The findings show that one-trial, long-lasting perceptual learning relies on hippocampus-independent (nondeclarative) memory, independent of any requirement to consciously remember. 
    more » « less
  4. Abstract

    Co‐speech hand gesture facilitates learning and memory, yet the cognitive and neural mechanisms supporting this remain unclear. One possibility is that motor information in gesture may engage procedural memory representations. Alternatively, iconic information from gesture may contribute to declarative memory representations mediated by the hippocampus. To investigate these alternatives, we examined gesture's effects on word learning in patients with hippocampal damage and declarative memory impairment, with intact procedural memory, and in healthy and in brain‐damaged comparison groups. Participants learned novel label‐object pairings while producing gesture, observing gesture, or observing without gesture. After a delay, recall and object identification were assessed. Unsurprisingly, amnesic patients were unable to recall the labels at test. However, they correctly identified objects at above chance levels, but only if they produced a gesture at encoding. Comparison groups performed well above chance at both recall and object identification regardless of gesture. These findings suggest that gesture production may support word learning by engaging nondeclarative (procedural) memory.

     
    more » « less
  5. Abstract

    Evidence that the hippocampus is critical for spatial memory in nonnavigational tests is mixed. A recent study reported that temporary hippocampal inactivation impaired spatial memory in the nonnavigational Hamilton Search Task in monkeys. However, several studies have documented no impairment on other nonnavigational spatial memory tests following permanent hippocampal lesions. It was hypothesized that transient, but not permanent, hippocampal disruption produces deficits because monkeys undergoing transient inactivation continue to try to use a hippocampal‐dependent strategy, whereas monkeys with permanent lesions use a nonhippocampal‐dependent strategy. We evaluated this hypothesis by testing five rhesus monkeys with hippocampal lesions and five controls on a computerized analogue of the Hamilton Search Task. On each trial, monkeys saw an array of squares on a touchscreen, each of which “hid” one reward. Retrieving a reward depleted that location and monkeys continued selecting squares until they found all rewards. The optimal strategy is to remember chosen locations and choose each square once. Unlike the inactivation study, monkeys with hippocampal damage were as accurate as controls regardless of retention interval. Critically, we found no evidence that the groups used different strategies, as measured by learning rates, spatial search biases, perseverative win‐stay errors, or inter‐choice distance. This discrepancy between the effect of inactivations and lesions may result from off‐target effects of inactivations or as‐yet‐unidentified differences between the physical and computerized tasks. Combined with previous evidence that hippocampal damage impairs navigational memory in monkeys, this evidence constrains the role of the hippocampus in spatial memory as being critical for navigational tests that likely involve allocentric spatial memory but not nonnavigational tests that likely involve egocentric spatial memory.

     
    more » « less