skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis of 5‐Cyanomethyluridine (cnm 5 U) and 5‐Cyanouridine (cn 5 U) Phosphoramidites and Their Incorporation into RNA Oligonucleotides
Abstract This article contains detailed synthetic protocols for preparation of 5‐cyanomethyluridine (cnm5U) and 5‐cyanouridine (cn5U) phosphoramidites. The synthesis of the cnm5U phosphoramidite building block starts with commercially available 5‐methyluridine (m5C), followed by bromination of the 5‐methyl group to install the cyano moiety using TMSCN/TBAF. The cn5U phosphoramidite is obtained by regular Vorbrüggen glycosylation of the protected ribofuranose with silylated 5‐cyanouracil. These two modified phosphoramidites are suitable for synthesis of RNA oligonucleotides on solid phase using conventional amidite chemistry. Our protocol provides access to two novel building blocks for constructing RNA‐based therapeutics. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cnm5U and cn5U phosphoramidites Basic Protocol 2: Synthesis, purification, and characterization of cnm5U‐ and cn5U‐modified RNA oligonucleotides  more » « less
Award ID(s):
1715234
PAR ID:
10238704
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Current Protocols in Nucleic Acid Chemistry
Volume:
82
Issue:
1
ISSN:
1934-9270
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This protocol describes the synthesis of long oligonucleotides (up to 401‐mer), their isolation from complex mixtures using the catching‐by‐polymerization (CBP) method, and the selection of error‐free sequence via cloning followed by Sanger sequencing. Oligo synthesis is achieved under standard automated solid‐phase synthesis conditions with only minor yet critical adjustments using readily available reagents. The CBP method involves tagging the full‐length sequence with a polymerizable tagging phosphoramidite (PTP), co‐polymerizing the sequence into a polymer, washing away failure sequences, and cleaving the full‐length sequence from the polymer. Cloning and sequencing guided selection of error‐free sequence overcome the problems of substitution, deletion, and addition errors that cannot be addressed using any other methods, including CBP. Long oligos are needed in many areas such as protein engineering and synthetic biology. The methods described here are particularly important for projects requiring long oligos containing long repeats or stable higher‐order structures, which are difficult or impossible to produce using any other existing technologies. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Long oligo synthesis Support Protocol 1: Synthesis of polymerizable tagging phosphoramidite (PTP) Support Protocol 2: Synthesis of 5′‐O‐Bz phosphoramidite Basic Protocol 2: Catching‐by‐polymerization (CBP) purification Basic Protocol 3: Error‐free sequence selection via cloning and sequencing 
    more » « less
  2. Abstract This protocol describes a method for the incorporation of sensitive functional groups into oligodeoxynucleotides (ODNs). The nucleophile‐sensitive epigeneticN4‐acetyldeoxycytosine (4acC) DNA modification is used as an example, but other sensitive groups can also be incorporated, e.g., alkyl halide, α‐haloamide, alkyl ester, aryl ester, thioester, and chloropurine groups, all of which are unstable under the basic and nucleophilic deprotection and cleavage conditions used in standard ODN synthesis methods. The method uses a 1,3‐dithian‐2‐yl‐methoxycarbonyl (Dmoc) group that carries a methyl group at the carbon of the methoxy moiety (meDmoc) for the protection of exo‐amines of nucleobases. The growing ODN is anchored to a solid support via a Dmoc linker. With these protecting and linking strategies, ODN deprotection and cleavage are achieved without using any strong bases and nucleophiles. Instead, they can be carried out under nearly neutral non‐nucleophilic oxidative conditions. To increase the length of ODNs that can be synthesized using the meDmoc method, the protocol also describes the synthesis of a PEGylated Dmoc (pDmoc) phosphoramidite. With some of the nucleotides being incorporated with pDmoc‐CE phosphoramidite, the growing ODN on the solid support carries PEG moieties and becomes more soluble, thus enabling longer ODN synthesis. The ODN synthesis method described in this protocol is expected to make many sensitive ODNs that are difficult to synthesize accessible to researchers in multiple areas, such as epigenetics, nanopore sequencing, nucleic acid‐protein interactions, antisense drug development, DNA alkylation carcinogenesis, and DNA nanotechnology. © 2024 Wiley Periodicals LLC. Basic Protocol: Sensitive ODN synthesis Support Protocol 1: Synthesis of meDmoc‐CE phosphoramidites Support Protocol 2: Synthesis of a pDmoc‐CE phosphoramidite 
    more » « less
  3. Abstract Solid‐phase synthesis of RNA oligonucleotides over 100 nt in length remains challenging due to the complexity of purification of the target strands from the failure sequences. This article describes a non‐chromatographic procedure that will enable routine solid‐phase synthesis and purification of long RNA strands. The optimized five‐step process is based on bio‐orthogonal inverse electron demand Diels‐Alder chemistry betweentrans‐cyclooctene (TCO) and tetrazine (Tz), and entails solid‐phase synthesis of RNA on a photo‐labile support. The target oligonucleotide strands are selectively tagged with Tz while on‐support. After photocleavage from the solid support, the target oligonucleotide strands can be captured and purified from the failure sequences using immobilized TCO. The approach can be applied for purification of 76‐nt long tRNA and 101‐nt long sgRNA for CRISPR experiments. Purity of the isolated oligonucleotides should be evaluated using gel electrophoresis, while functional fidelity of the sgRNA should be confirmed using CRISPR‐Cas9 experiments. © 2021 Wiley Periodicals LLC. Basic Protocol: Five‐step non‐chromatographic purification of synthetic RNA oligonucleotides Support Protocol 1: Synthesis of the components that are required for the non‐chromatographic purification of long RNA oligonucleotides. Support Protocol 2: Solid‐phase RNA synthesis 
    more » « less
  4. Henkin, Tina M (Ed.)
    The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Aspcontains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negativeEscherichia coliK12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence ofmnmCorthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in bothBacillus subtilisandStreptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U inB. subtilis. Analysis of tRNA modifications of bothS. mutansandStreptococcus pneumoniaeshows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications. 
    more » « less
  5. Fast and reasonable low‐scale (200 nmol) syringe‐made synthesis of15N‐labeled oligonucleotides representing DNA trinucleotide codons is communicated. All codons were prepared by solid‐phase controlled pore glass synthesis column technique via the phosphoramidite method. Twenty‐four labeled oligonucleotides covering the DNA genetic code alphabet were prepared using commercially available reagents and affordable equipment in a reasonably short period of time, with acceptable yields and purity for direct applications in mass spectrometry. 
    more » « less