A nonlinear analogue of the Rademacher type of a Banach space was introduced in classical work of Enflo. The key feature of Enflo type is that its definition uses only the metric structure of the Banach space, while the definition of Rademacher type relies on its linear structure. We prove that Rademacher type and Enflo type coincide, settling a long-standing open problem in Banach space theory. The proof is based on a novel dimension- free analogue of Pisier’s inequality on the discrete cube.
more »
« less
Rademacher type and Enflo type coincide
A nonlinear analogue of the Rademacher type of a Banach space was introduced in classical work of Enflo. The key feature of Enflo type is that its definition uses only the metric structure of the Banach space, while the definition of Rademacher type relies on its linear structure. We prove that Rademacher type and Enflo type coincide, settling a long-standing open problem in Banach space theory. The proof is based on a novel dimension-free analogue of Pisier’s inequality on the discrete cube.
more »
« less
- PAR ID:
- 10239553
- Date Published:
- Journal Name:
- Annals of mathematics
- Volume:
- 192
- Issue:
- 2
- ISSN:
- 0003-486X
- Page Range / eLocation ID:
- 665-678
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We formulate general conditions which imply that $${\mathcal L}(X,Y)$$ , the space of operators from a Banach space X to a Banach space Y , has $$2^{{\mathfrak {c}}}$$ closed ideals, where $${\mathfrak {c}}$$ is the cardinality of the continuum. These results are applied to classical sequence spaces and Tsirelson-type spaces. In particular, we prove that the cardinality of the set ofclosed ideals in $${\mathcal L}\left (\ell _p\oplus \ell _q\right )$$ is exactly $$2^{{\mathfrak {c}}}$$ for all $$1<\infty $$ .more » « less
-
The rational homotopy type of a mapping space is a way to describe the structure of the space using the algebra of its homotopy groups and the differential graded algebra of its cochains. An L∞-model is a graded Lie algebra with a family of higher-order brackets satisfying the generalized Jacobi identity and antisymmetry. It can be used to study the rational homotopy type of a space. The nilpotency index of an L∞-model is useful in understanding a space's algebraic structure. In this paper, we compute the rational homotopy type of the component of some mapping spaces between projective spaces and determine the nilpotency index of corresponding L∞-models.more » « less
-
Regularized learning problems in Banach spaces, which often minimize the sum of a data fidelity term in one Banach norm and a regularization term in another Banach norm, is challenging to solve. We construct a direct sum space based on the Banach spaces for the fidelity term and the regularization term and recast the objective function as the norm of a quotient space of the direct sum space. We then express the original regularized problem as an optimization problem in the dual space of the direct sum space. It is to find the maximum of a linear function on a convex polytope, which may be solved by linear programming. A solution of the original problem is then obtained by using related extremal properties of norming functionals from a solution of the dual problem. Numerical experiments demonstrate that the proposed duality approach is effective for solving the regularization learning problems.more » « less
-
This work aims to prove a Hardy-type inequality and a trace theorem for a class of function spaces on smooth domains with a nonlocal character. Functions in these spaces are allowed to be as rough as an [Formula: see text]-function inside the domain of definition but as smooth as a [Formula: see text]-function near the boundary. This feature is captured by a norm that is characterized by a nonlocal interaction kernel defined heterogeneously with a special localization feature on the boundary. Thus, the trace theorem we obtain here can be viewed as an improvement and refinement of the classical trace theorem for fractional Sobolev spaces [Formula: see text]. Similarly, the Hardy-type inequalities we establish for functions that vanish on the boundary show that functions in this generalized space have the same decay rate to the boundary as functions in the smaller space [Formula: see text]. The results we prove extend existing results shown in the Hilbert space setting with p = 2. A Poincaré-type inequality we establish for the function space under consideration together with the new trace theorem allows formulating and proving well-posedness of a nonlinear nonlocal variational problem with conventional local boundary condition.more » « less
An official website of the United States government

