skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design, Fabrication, and Validation of a Petri Dish-Compatible PDMS Bioreactor for the Tensile Stimulation and Characterization of Microtissues
In this paper, we report on a novel biocompatible micromechanical bioreactor (actuator and sensor) designed for the in situ manipulation and characterization of live microtissues. The purpose of this study was to develop and validate an application-targeted sterile bioreactor that is accessible, inexpensive, adjustable, and easily fabricated. Our method relies on a simple polydimethylsiloxane (PDMS) molding technique for fabrication and is compatible with commonly-used laboratory equipment and materials. Our unique design includes a flexible thin membrane that allows for the transfer of an external actuation into the PDMS beam-based actuator and sensor placed inside a conventional 35 mm cell culture Petri dish. Through computational analysis followed by experimental testing, we demonstrated its functionality, accuracy, sensitivity, and tunable operating range. Through time-course testing, the actuator delivered strains of over 20% to biodegradable electrospun poly (D, L-lactide-co-glycolide) (PLGA) 85:15 non-aligned nanofibers (~91 µm thick). At the same time, the sensor was able to characterize time-course changes in Young’s modulus (down to 10–150 kPa), induced by an application of isopropyl alcohol (IPA). Furthermore, the actuator delivered strains of up to 4% to PDMS monolayers (~30 µm thick), simultaneously characterizing their elastic modulus up to ~2.2 MPa. The platform repeatedly applied dynamic (0.23 Hz) tensile stimuli to live Human Dermal Fibroblast (HDF) cells for 12 hours (h) and recorded the cellular reorientation towards two angle regimes, with averages of −58.85° and +56.02°. The device biocompatibility with live cells was demonstrated for one week, with no signs of cytotoxicity. We can conclude that our PDMS bioreactor is advantageous for low-cost tissue/cell culture micromanipulation studies involving mechanical actuation and characterization. Our device eliminates the need for an expensive experimental setup for cell micromanipulation, increasing the ease of live-cell manipulation studies by providing an affordable way of conducting high-throughput experiments without the need to open the Petri dish, reducing manual handling, cross-contamination, supplies, and costs. The device design, material, and methods allow the user to define the operational range based on their targeted samples/application.  more » « less
Award ID(s):
1809047 1942518
PAR ID:
10243520
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Micromachines
Volume:
11
Issue:
10
ISSN:
2072-666X
Page Range / eLocation ID:
892
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jabbari, Esmaiel (Ed.)
    This study presents novel biocompatible Polydimethylsiloxane (PDMS)-based micromechanical tweezers (μTweezers) capable of the stiffness characterization and manipulation of hydrogel-based organoids. The system showed great potential for complementing established mechanical characterization methods such as Atomic Force Microscopy (AFM), parallel plate compression (PPC), and nanoindentation, while significantly reducing the volume of valuable hydrogels used for testing. We achieved a volume reduction of ~0.22 μl/sample using the μTweezers vs. ~157 μl/sample using the PPC, while targeting high-throughput measurement of widely adopted micro-mesoscale (a few hundred μm-1500 μm) 3D cell cultures. The μTweezers applied and measured nano-millinewton forces through cantilever’ deflection with high linearity and tunability for different applications; the assembly is compatible with typical inverted optical microscopes and fit on standard tissue culture Petri dishes, allowing mechanical compression characterization of arrayed 3D hydrogel-based organoids in a high throughput manner. The average achievable output per group was 40 tests per hour, where 20 organoids and 20 reference images in one 35 mm petri dish were tested, illustrating efficient productivity to match the increasing demand on 3D organoids’ applications. The changes in stiffness of collagen I hydrogel organoids in four conditions were measured, with ovarian cancer cells (SKOV3) or without (control). The Young’s modulus of the control group (Control—day 0, E = 407± 146, n = 4) measured by PPC was used as a reference modulus, where the relative elastic compressive modulus of the other groups based on the stiffness measurements was also calculated (control-day 0, E = 407 Pa), (SKOV3-day 0, E = 318 Pa), (control-day 5, E = 528 Pa), and (SKOV3-day 5, E = 376 Pa). The SKOV3-embedded hydrogel-based organoids had more shrinkage and lowered moduli on day 0 and day 5 than controls, consistently, while SKOV3 embedded organoids increased in stiffness in a similar trend to the collagen I control from day 0 to day 5. The proposed method can contribute to the biomedical, biochemical, and regenerative engineering fields, where bulk mechanical characterization is of interest. The μTweezers will also provide attractive design and application concepts to soft membrane-micro 3D robotics, sensors, and actuators. 
    more » « less
  2. Abstract Dimensional change in a solid due to electrochemically driven compositional change is termed electro‐chemo‐mechanical (ECM) coupling. This effect causes mechanical instability in Li‐ion batteries and solid oxide fuel cells. Nevertheless, it can generate considerable force and deformation, making it attractive for mechanical actuation. Here a Si‐compatible ECM actuator in the form of a 2 mm diameter membrane is demonstrated. Actuation results from oxygen ion transfer between two 0.1 µm thick Ti oxide\Ce0.8Gd0.2O1.9nanocomposite layers separated by a 1.5 µm thick Ce0.8Gd0.2O1.9solid electrolyte. The chemical reaction responsible for stress generation is electrochemical oxidation/reduction in the composites. Under ambient conditions, application of 5 V DC produces actuator response within seconds, generating vertical displacement of several µm with calculated stress≈3.5 MPa. The membrane actuator preserves its final mechanical state for more than 1 h following voltage removal. These characteristics uniquely suit ECM actuators for room temperature applications in Si‐integrated microelectromechanical systems. 
    more » « less
  3. Abstract Quantifying bacterial cell numbers is crucial for experimental assessment and reproducibility, but the current technologies have limitations. The commonly used colony forming units (CFU) method causes a time delay in determining the actual numbers. Manual microscope counts are often error-prone for submicron bacteria. Automated systems are costly, require specialized knowledge, and are erroneous when counting smaller bacteria. In this study, we took a different approach by constructing three sequential generations (G1, G2, and G3) of counter-on-chip that accurately and timely count small particles and/or bacterial cells. We employed 2-photon polymerization (2PP) fabrication technology; and optimized the printing and molding process to produce high-quality, reproducible, accurate, and efficient counters. Our straightforward and refined methodology has shown itself to be highly effective in fabricating structures, allowing for the rapid construction of polydimethylsiloxane (PDMS)-based microfluidic devices. The G1 comprises three counting chambers with a depth of 20 µm, which showed accurate counting of 1 µm and 5 µm microbeads. G2 and G3 have eight counting chambers with depths of 20 µm and 5 µm, respectively, and can quickly and precisely countEscherichia colicells. These systems are reusable, accurate, and easy to use (compared to CFU/ml). The G3 device can give (1) accurate bacterial counts, (2) serve as a growth chamber for bacteria, and (3) allow for live/dead bacterial cell estimates using staining kits or growth assay activities (live imaging, cell tracking, and counting). We made these devices out of necessity; we know no device on the market that encompasses all these features. 
    more » « less
  4. Control over the surface chemistry of elastomers such as polydimethylsiloxane (PDMS) is important for many applications. However, achieving nanostructured chemical control on amorphous material interfaces below the length scale of substrate heterogeneity is not straightforward, and can be particularly difficult to decouple from changes in network structure that are required for certain applications (e.g., variation of elastic modulus for cell culture). We have recently reported a new method for precisely structured surface functionalization of PDMS and other soft materials, which displays high densities of ligands directly on the material surface, maximizing steric accessibility. Here, we systematically examine structural factors in the PDMS components (e.g., base and cross-linker structures) that impact efficiency of the interfacial reaction that leads to surface functionalization. Applying this understanding, we demonstrate routes for generating equivalent nanometer-scale functional patterns on PDMS with elastic moduli from 0.013 to 1.4 MPa, establishing a foundation for use in applications such as cell culture. 
    more » « less
  5. Sensing and actuation are intricately connected in soft robotics, where contact may change actuator mechanics and robot behavior. To improve soft robotic control and performance, proprioception and contact sensors are needed to report robot state without altering actuation mechanics or introducing bulky, rigid components. For bioinspired McKibben-style fluidic actuators, prior work in sensing has focused on sensing the strain of the actuator by embedding sensors in the actuator bladder during fabrication, or by adhering sensors to the actuator surface after fabrication. However, material property mismatches between sensors and actuators can impede actuator performance, and many soft sensors available for use with fluidic actuators rely on costly or labor-intensive fabrication methods. Here, we demonstrate a low-cost and easy-to manufacture-tubular liquid metal strain sensor for use with soft actuators that can be used to detect actuator strain and contact between the actuator and external objects. The sensor is flexible, can be fabricated with commercial-off-the-shelf components, and can be easily integrated with existing soft actuators to supplement sensing, regardless of actuator shape or size. Furthermore, the soft tubular strain sensor exhibits low hysteresis and high sensitivity. The approach presented in this work provides a low-cost, soft sensing solution for broad application in soft robotics. 
    more » « less