The synthesis of hierarchical lamellar zeolites with a controlled meso-/microporous morphology and acidity is an expanding area of research interest for a wide range of applications. Here, we report a one-step synthesis of a hierarchical meso-/microporous lamellar MFI–Sn/Al zeolite ( i.e. , containing both Lewis acidic Sn- and Al-sites and a Brønsted acidic Al–O(H)–Si site) and its catalytic application for the conversion of glucose into 5-(ethoxymethyl)furfural (EMF). The MFI–Sn/Al zeolite was prepared with the assistance of a diquaternary ammonium ([C 22 H 45 –N + (CH 3 ) 2 –C 6 H 12 –N + (CH 3 ) 2 –C 6 H 13 ]Br 2− , C 22-6-6 ) template in a composition of 100SiO 2 /5C 22-6-6 /18.5Na 2 O/ x Al 2 O 3 / y SnO 2 /2957H 2 O ( x = 0.5, 1, and 2; y = 1 and 2, respectively). The MFI–Sn/Al zeolites innovatively feature dual meso-/microporosity and dual Lewis and Brønsted acidity, which enabled a three-step reaction cascade for EMF synthesis from glucose in ethanol solvent. The reaction proceeded via the isomerization of glucose to fructose over Lewis acidic Sn sites and the dehydration of fructose to 5-hydroxymethylfurfural (HMF) and then the etherification of HMF and ethanol to EMF over the Brønsted acidic Al–O(H)–Si sites. The co-existence of multiple acidities in a single zeolite catalyst enabled one-pot cascade reactions for carbohydrate upgrading. The dual meso-/microporosity in the MFI–Sn/Al zeolites facilitated mass transport in processing of bulky biomass molecules. The balance of both types of acidity and meso-/microporosity realized an EMF yield as high as 44% from the glucose reactant.
more »
« less
Catalytic behavior of hexaphenyldisiloxane in the synthesis of pyrite FeS 2
Functional small molecules afford opportunities to direct solid-state inorganic reactions at low temperatures. Here, we use catalytic amounts of organosilicon molecules to influence the metathesis reaction: FeCl 2 + Na 2 S 2 → 2NaCl + FeS 2 . Specifically, hexaphenyldisiloxane ((C 6 H 5 ) 6 Si 2 O) is shown to increase pyrite yields in metathesis reactions performed at 150 °C. In situ synchrotron X-ray diffraction (SXRD) paired with differential scanning calorimetry (DSC) reveals that diffusion-limited intermediates are circumvented in the presence of (C 6 H 5 ) 6 Si 2 O. Control reactions suggest that the observed change in the reaction pathway is imparted by the Si–O functional group. 1 H NMR supports catalytic behavior, as (C 6 H 5 ) 6 Si 2 O is unchanged ex post facto . Taken together, we hypothesize that the polar Si–O functional group coordinates to iron chloride species when NaCl and Na 2 S 4 form, forming an unidentified, transient intermediate. Further exploration of targeted small molecules in these metathesis reaction provides new strategies in controlling inorganic materials synthesis at low-temperatures.
more »
« less
- Award ID(s):
- 1653863
- PAR ID:
- 10244139
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 56
- Issue:
- 64
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 9186 to 9189
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Salt metathesis reactions between a low-valent rhenium( i ) complex, Na[Re(η 5 -Cp)(BDI)] (BDI = N , N ′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate), and a series of amidinate-supported tetrylenes of the form ECl[PhC(N t Bu) 2 ] (E = Si, Ge, Sn) led to rhenium metallotetrylenes Re(E[PhC(N t Bu) 2 ])(η 5 -Cp)(BDI) (E = Si ( 1a ), Ge ( 2 ), Sn ( 4 )) with varying extents of Re–E multiple bonding. Whereas the rhenium–stannylene 4 adopts a σ-metallotetrylene arrangement featuring a Re–E single bond, the rhenium–silylene ( 1a ) and –germylene ( 2 ) both engage in π-interactions to form short Re–E multiple bonds. Temperature was found to play a crucial role in reactions between Na[Re(η 5 -Cp)(BDI)] and SiCl[PhC(N t Bu) 2 ], as manipulation of reaction conditions led to isolation of an unusual rhenium–silane, (BDI)Re(μ-η 5 :η 1 -C 5 H 4 )(SiH[PhC(N t Bu) 2 ]) ( 1b ) and a dinitrogen bridged rhenium–silylene, (η 5 -Cp)(BDI)Re(μ-N 2 )Si[PhC(N t Bu) 2 ] ( 1c ), in addition to 1a . Finally, the reaction of Na[Re(η 5 -Cp)(BDI)] with GeCl 2 ·dioxane led to a rare μ 2 -tetrelido complex, μ 2 -Ge[Re(η 5 -Cp)(BDI)] 2 ( 3 ). Bonding interactions within these complexes are discussed through the lens of various spectroscopic, structural, and computational investigations.more » « less
-
The reactions of thioformaldehyde (H 2 CS) with OH radicals and assisted by a single water molecule have been investigated using high level ab initio quantum chemistry calculations. The H 2 CS + ˙OH reaction can in principle proceed through: (1) abstraction, and (2) addition pathways. The barrier height for the addition reaction in the absence of a catalyst was found to be −0.8 kcal mol −1 , relative to the separated reactants, which has a ∼1.0 kcal mol −1 lower barrier than the abstraction channel. The H 2 CS + ˙OH reaction assisted by a single water molecule reduces the barrier heights significantly for both the addition and abstraction channels, to −5.5 and −6.7 kcal mol −1 respectively, compared to the un-catalyzed H 2 CS + ˙OH reaction. These values suggest that water lowers the barriers by ∼6.0 kcal mol −1 for both reaction paths. The rate constants for the H 2 CS⋯H 2 O + ˙OH and OH⋯H 2 O + H 2 CS bimolecular reaction channels were calculated using Canonical Variational Transition state theory (CVT) in conjunction with the Small Curvature Tunneling (SCT) method over the atmospherically relevant temperatures between 200 and 400 K. Rate constants for the H 2 CS + ˙OH reaction paths for comparison with the H 2 CS + ˙OH + H 2 O reaction in the same temperature range were also computed. The results suggest that the rate of the H 2 CS + ˙OH + H 2 O reaction is slower than that of the H 2 CS + ˙OH reaction by ∼1–4 orders of magnitude in the temperatures between 200 and 400 K. For example, at 300 K, the rates of the H 2 CS + ˙OH + H 2 O and H 2 CS + ˙OH reactions were found to be 2.2 × 10 −8 s −1 and 6.4 × 10 −6 s −1 , respectively, calculated using [OH] = 1.0 × 10 6 molecules cm −3 , and [H 2 O] = 8.2 × 10 17 molecules cm −3 (300 K, RH 100%) atmospheric conditions. Electronic structure calculations on the H 2 C(OH)S˙ product in the presence of 3 O 2 were also performed. The results show that H 2 CS is removed from the atmosphere primarily by reacting with ˙OH and O 2 to form thioformic acid, HO 2 , formaldehyde, and SO 2 as the main end products.more » « less
-
Abstract Na2WO4/SiO2, a material known to catalyze alkane selective oxidation including the oxidative coupling of methane (OCM), is demonstrated to catalyze selective hydrogen combustion (SHC) with >97 % selectivity in mixtures with several hydrocarbons (CH4, C2H6, C2H4, C3H6, C6H6) in the presence of gas‐phase dioxygen at 883–983 K. Hydrogen combustion rates exhibit a near‐first‐order dependence on H2partial pressure and are zero‐order in H2O and O2partial pressures. Mechanistic studies at 923 K using isotopically‐labeled reagents demonstrate the kinetic relevance of H−H dissociation and absence of O‐atom recombination. In situ X‐ray diffraction (XRD) and W LIII‐edge X‐ray absorption spectroscopy (XAS) studies demonstrate, respectively, a loss of Na2WO4crystallinity and lack of second‐shell coordination with respect to W6+cations below 923 K; benchmark experiments show that alkali cations must be present for the material to be selective for hydrogen combustion, but that materials containing Na alone have much lower combustion rates (per gram Na) than those containing Na and W. These data suggest a synergy between Na and W in a disordered phase at temperatures below the bulk melting point of Na2WO4(971 K) during SHC catalysis. The Na2WO4/SiO2SHC catalyst maintains stable combustion rates at temperatures ca. 100 K higher than redox‐active SHC catalysts and could potentially enable enhanced olefin yields in tandem operation of reactors combining alkane dehydrogenation with SHC processes.more » « less
-
For more than half a century, pericyclic reactions have played an important role in advancing our fundamental understanding of cycloadditions, sigmatropic shifts, group transfer reactions, and electrocyclization reactions. However, the fundamental mechanisms of photochemically activated cheletropic reactions have remained contentious. Here we report on the simplest cheletropic reaction: the [2+1] addition of ground state 18 O-carbon monoxide (C 18 O, X 1 Σ + ) to D2-acetylene (C 2 D 2 ) photochemically excited to the first excited triplet (T1), second excited triplet (T2), and first excited singlet state (S1) at 5 K, leading to the formation of D2- 18 O-cyclopropenone (c-C 3 D 2 18 O). Supported by quantum-chemical calculations, our investigation provides persuasive testimony on stepwise cheletropic reaction pathways to cyclopropenone via excited state dynamics involving the T2 (non-adiabatic) and S1 state (adiabatic) of acetylene at 5 K, while the T1 state energetically favors an intermediate structure that directly dissociates after relaxing to the ground state. The agreement between experiments in low temperature ices and the excited state calculations signifies how photolysis experiments coupled with theoretical calculations can untangle polyatomic reactions with relevance to fundamental physical organic chemistry at the molecular level, thus affording a versatile strategy to unravel exotic non-equilibrium chemistries in cyclic, aromatic organics. Distinct from traditional radical–radical pathways leading to organic molecules on ice-coated interstellar nanoparticles (interstellar grains) in cold molecular clouds and star-forming regions, the photolytic formation of cyclopropenone as presented changes the perception of how we explain the formation of complex organics in the interstellar medium eventually leading to the molecular precursors of biorelevant molecules.more » « less
An official website of the United States government

