skip to main content

Title: Response diversity in corals: hidden differences in bleaching mortality among cryptic Pocillopora species
Variation among functionally similar species in their response to environmental stress buffers ecosystems from changing states. Functionally similar species may often be cryptic species representing evolutionarily distinct genetic lineages that are morphologically indistinguishable. However, the extent to which cryptic species differ in their response to stress, and could therefore provide a source of response diversity, remains unclear because they are often not identified or are assumed to be ecologically equivalent. Here, we uncover differences in the bleaching response between sympatric cryptic species of the common Indo-Pacific coral, Pocillopora. In April 2019, prolonged ocean heating occurred at Moorea, French Polynesia. 72% of pocilloporid colonies bleached after 22 days of severe heating (>8°C-days) at 10 m depth on the north shore fore reef. Colony mortality ranged from 11% to 42% around the island four months after heating subsided. The majority (86%) of pocilloporids that died from bleaching belonged to a single haplotype, despite twelve haplotypes, representing at least five species, being sampled. Mitochondrial (open reading frame) sequence variation was greater between the haplotypes that experienced mortality versus haplotypes that all survived than it was between nominal species that all survived. Colonies >30 cm in diameter were identified as the haplotype experiencing the more » most mortality, and in 1125 colonies that were not genetically identified, bleaching and mortality increased with colony size. Mortality did not increase with colony size within the haplotype suffering the highest mortality, suggesting that size-dependent bleaching and mortality at the genus level was caused instead by differences among cryptic species. The relative abundance of haplotypes shifted between February and August, driven by declines in the same common haplotype for which mortality was estimated directly, at sites where heat accumulation was greatest, and where larger colony sizes occurred. The identification of morphologically indistinguishable species that differ in their response to thermal stress, but share a similar ecological function in terms of maintaining a coral-dominated state, has important consequences for uncovering response diversity that drives resilience, especially in systems with low or declining functional diversity. « less
Authors:
; ; ; ;
Award ID(s):
1829898 1829867 1637396
Publication Date:
NSF-PAR ID:
10244150
Journal Name:
Ecology
ISSN:
0012-9658
Sponsoring Org:
National Science Foundation
More Like this
  1. Cryptic species that are morphologically similar co-occur because either the rate of competitive exclusion is very slow, or because they are not, in fact, ecologically similar. The processes that maintain cryptic local diversity may, therefore, be particularly subtle and difficult to identify. Here, we uncover differences among several cryptic species in their relative abundance across a depth gradient within a dominant and ecologically important genus of hard coral, Pocillopora. From extensive sampling unbiased towards morphological characters, at multiple depths on the fore reef around the island of Mo’orea, French Polynesia, we genetically identified 673 colonies in the Pocillopora species complex. We identified 14 mitochondrial Open Reading Frame haplotypes (mtORFs, a well-studied and informative species marker used for pocilloporids), which included at least six nominal species, and uncovered differences among haplotypes in their relative abundance at 5, 10, and 20 m at four sites around the island. Differences in relative haplotype abundance across depths were greater than differences among sites separated by several kilometers. The four most abundant species are often visibly indistinguishable at the gross colony level, yet they exhibited stark differences in their associations with light irradiance and daily water temperature variance. The pattern of community composition was associatedmore »with frequent cooling in deeper versus shallower water more than warmer temperatures in shallow water. Our results indicate that these cryptic species are not all ecologically similar. The differential abundance of Pocillopora cryptic species across depth should promote their coexistence at the reef scale, as well as promote resilience through response diversity.« less
  2. Reef-building coral species are experiencing an unprecedented decline owing to increasing frequency and intensity of marine heatwaves and associated bleaching-induced mortality. Closely related species from the Acropora hyacinthus species complex differ in heat tolerance and in their association with heat-tolerant symbionts. We used low-coverage full genome sequencing of 114 colonies monitored across the 2015 bleaching event in American Samoa to determine the genetic differences among four cryptic species (termed HA, HC, HD and HE) that have diverged in these species traits. Cryptic species differed strongly at thousands of single nucleotide polymorphisms across the genome which are enriched for amino acid changes in the bleaching-resistant species HE. In addition, HE also showed two particularly divergent regions with strong signals of differentiation. One approximately 220 kb locus, HES1, contained the majority of fixed differences in HE. A second locus, HES2, was fixed in HE but polymorphic in the other cryptic species. Surprisingly, non-HE individuals with HE-like haplotypes at HES2 were more likely to bleach. At both loci, HE showed particular sequence similarity to a congener, Acropora millepora . Overall, resilience to bleaching during the third global bleaching event was strongly structured by host cryptic species, buoyed by differences in symbiont associations betweenmore »these species.« less
  3. Abstract

    The ‘species’ is a key concept for conservation and evolutionary biology, yet the lines between population and species-level variation are often blurred, especially for corals. The ‘Porites lobataspecies complex’ consists of branching and mounding corals that form reefs across the Pacific. We used reduced representation meta-genomic sequencing to examine genetic relationships within this species complex and to identify candidate loci associated with colony morphology, cryptic genetic structure, and apparent bleaching susceptibility. We compared existingPoritesdata with bleached and unbleached colonies of the branching coralP. compressacollected in Kāneʻohe Bay Hawaiʻi during the 2015 coral bleaching event. Loci that mapped to coral, symbiont, and microbial references revealed genetic structure consistent with recent host-symbiont co-evolution. Cryptic genetic clades were resolved that previous work has associated with distance from shore, but no genetic structure was associated with bleaching. We identified many candidate loci associated with morphospecies, including candidate host and symbiont loci with fixed differences between branching and mounding corals. We also found many loci associated with cryptic genetic structure, yet relatively few loci associated with bleaching. Recent host-symbiont co-evolution and rapid diversification suggests that variation and therefore the capacity of these corals to adapt may be underappreciated.

  4. Abstract Background Management actions that address local-scale stressors on coral reefs can rapidly improve water quality and reef ecosystem condition. In response to reef managers who need actionable thresholds for coastal runoff and dredging, we conducted a systematic review and meta-analysis of experimental studies that explore the effects of sediment on corals. We identified exposure levels that ‘adversely’ affect corals while accounting for sediment bearing (deposited vs. suspended), coral life-history stage, and species, thus providing empirically based estimates of stressor thresholds on vulnerable coral reefs. Methods We searched online databases and grey literature to obtain a list of potential studies, assess their eligibility, and critically appraise them for validity and risk of bias. Data were extracted from eligible studies and grouped by sediment bearing and coral response to identify thresholds in terms of the lowest exposure levels that induced an adverse physiological and/or lethal effect. Meta-regression estimated the dose–response relationship between exposure level and the magnitude of a coral’s response, with random-effects structures to estimate the proportion of variance explained by factors such as study and coral species. Review findings After critical appraisal of over 15,000 records, our systematic review of corals’ responses to sediment identified 86 studies to bemore »included in meta-analyses (45 studies for deposited sediment and 42 studies for suspended sediment). The lowest sediment exposure levels that caused adverse effects in corals were well below the levels previously described as ‘normal’ on reefs: for deposited sediment, adverse effects occurred as low as 1 mg/cm 2 /day for larvae (limited settlement rates) and 4.9 mg/cm 2 /day for adults (tissue mortality); for suspended sediment, adverse effects occurred as low as 10 mg/L for juveniles (reduced growth rates) and 3.2 mg/L for adults (bleaching and tissue mortality). Corals take at least 10 times longer to experience tissue mortality from exposure to suspended sediment than to comparable concentrations of deposited sediment, though physiological changes manifest 10 times faster in response to suspended sediment than to deposited sediment. Threshold estimates derived from continuous response variables (magnitude of adverse effect) largely matched the lowest-observed adverse-effect levels from a summary of studies, or otherwise helped us to identify research gaps that should be addressed to better quantify the dose–response relationship between sediment exposure and coral health. Conclusions We compiled a global dataset that spans three oceans, over 140 coral species, decades of research, and a range of field- and lab-based approaches. Our review and meta-analysis inform the no-observed and lowest-observed adverse-effect levels (NOAEL, LOAEL) that are used in management consultations by U.S. federal agencies. In the absence of more location- or species-specific data to inform decisions, our results provide the best available information to protect vulnerable reef-building corals from sediment stress. Based on gaps and limitations identified by our review, we make recommendations to improve future studies and recommend future synthesis to disentangle the potentially synergistic effects of multiple coral-reef stressors.« less
  5. Abstract

    Prospects for coral persistence through increasingly frequent and extended heatwaves seem bleak. Coral recovery from bleaching is only known to occur after temperatures return to normal, and mitigation of local stressors does not appear to augment coral survival. Capitalizing on a natural experiment in the equatorial Pacific, we track individual coral colonies at sites spanning a gradient of local anthropogenic disturbance through a tropical heatwave of unprecedented duration. Unexpectedly, some corals survived the event by recovering from bleaching while still at elevated temperatures. These corals initially had heat-sensitive algal symbiont communities, endured bleaching, and then recovered through proliferation of heat-tolerant symbionts. This pathway to survival only occurred in the absence of strong local stressors. In contrast, corals in highly disturbed areas were already dominated by heat-tolerant symbionts, and despite initially resisting bleaching, these corals had no survival advantage in one species and 3.3 times lower survival in the other. These unanticipated connections between disturbance, coral symbioses and heat stress resilience reveal multiple pathways to coral survival through future prolonged heatwaves.