skip to main content


Title: Shock–multicloud interactions in galactic outflows – I. Cloud layers with lognormal density distributions
ABSTRACT We report three-dimensional hydrodynamical simulations of shocks (${\cal M_{\rm shock}}\ge 4$) interacting with fractal multicloud layers. The evolution of shock–multicloud systems consists of four stages: a shock-splitting phase in which reflected and refracted shocks are generated, a compression phase in which the forward shock compresses cloud material, an expansion phase triggered by internal heating and shock re-acceleration, and a mixing phase in which shear instabilities generate turbulence. We compare multicloud layers with narrow ($\sigma _{\rho }=1.9\bar{\rho }$) and wide ($\sigma _{\rho }=5.9\bar{\rho }$) lognormal density distributions characteristic of Mach ≈ 5 supersonic turbulence driven by solenoidal and compressive modes. Our simulations show that outflowing cloud material contains imprints of the density structure of their native environments. The dynamics and disruption of multicloud systems depend on the porosity and the number of cloudlets in the layers. ‘Solenoidal’ layers mix less, generate less turbulence, accelerate faster, and form a more coherent mixed-gas shell than the more porous ‘compressive’ layers. Similarly, multicloud systems with more cloudlets quench mixing via a shielding effect and enhance momentum transfer. Mass loading of diffuse mixed gas is efficient in all models, but direct dense gas entrainment is highly inefficient. Dense gas only survives in compressive clouds, but has low speeds. If normalized with respect to the shock-passage time, the evolution shows invariance for shock Mach numbers ≥10 and different cloud-generating seeds, and slightly weaker scaling for lower Mach numbers and thinner cloud layers. Multicloud systems also have better convergence properties than single-cloud systems, with a resolution of eight cells per cloud radius being sufficient to capture their overall dynamics.  more » « less
Award ID(s):
1715876
NSF-PAR ID:
10244183
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
499
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2173 to 2195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Turbulence plays a crucial role in shaping the structure of the interstellar medium. The ratio of the three-dimensional density contrast ($\sigma _{\rho /\rho _0}$) to the turbulent sonic Mach number ($\mathcal {M}$) of an isothermal, compressible gas describes the ratio of solenoidal to compressive modes in the turbulent acceleration field of the gas, and is parameterized by the turbulence driving parameter: $b=\sigma _{\rho /\rho _0}/\mathcal {M}$. The turbulence driving parameter ranges from b = 1/3 (purely solenoidal) to b = 1 (purely compressive), with b = 0.38 characterizing the natural mixture (1/3 compressive, 2/3 solenoidal) of the two driving modes. Here, we present a new method for recovering $\sigma _{\rho /\rho _0}$, $\mathcal {M}$, and b, from observations on galactic scales, using a roving kernel to produce maps of these quantities from column density and centroid velocity maps. We apply our method to high-resolution ${\rm H}\,\rm{\small I}$ emission observations of the Small Magellanic Cloud (SMC) from the GASKAP-HI survey. We find that the turbulence driving parameter varies between b ∼ 0.3 and 1.0 within the main body of the SMC, but the median value converges to b ∼ 0.51, suggesting that the turbulence is overall driven more compressively (b > 0.38). We observe no correlation between the b parameter and ${\rm H}\,\rm{\small I}$ or H α intensity, indicating that compressive driving of ${\rm H}\,\rm{\small I}$ turbulence cannot be determined solely by observing ${\rm H}\,\rm{\small I}$ or H α emission density, and that velocity information must also be considered. Further investigation is required to link our findings to potential driving mechanisms such as star-formation feedback, gravitational collapse, or cloud–cloud collisions.

     
    more » « less
  2. Abstract

    Supersonic isothermal turbulence is a common process in astrophysical systems. In this work, we explore the energy in such systems. We show that the conserved energy is the sum of the kinetic energy (K) and Helmholtz free energy (F). We develop analytic predictions for the probability distributions,P(F) andP(K), as well as their nontrivial joint distribution,P(F,K). We verify these predictions with a suite of driven turbulence simulations, finding excellent agreement. The turbulence simulations were performed at Mach numbers ranging from 1 to 8, and three modes of driving: purely solenoidal, purely compressive, and mixed. We find thatP(F) is discontinuous atF= 0, with the discontinuity increasing with Mach number and compressive driving.P(K) resembles a lognormal with a negative skew. The joint distribution,P(F,K), shows a bimodal distribution, with gas either existing at highFand highKor at lowFand lowK.

     
    more » « less
  3. ABSTRACT Shocks waves are a ubiquitous feature of many astrophysical plasma systems, and an important process for energy dissipation and transfer. The physics of these shock waves are frequently treated/modelled as a collisional, fluid magnetohydrodynamic (MHD) discontinuity, despite the fact that many shocks occur in the collisionless regime. In light of this, using fully kinetic, 3D simulations of non-relativistic, parallel propagating collisionless shocks comprised of electron-positron plasma, we detail the deviation of collisionless shocks form MHD predictions for varying magnetization/Alfvénic Mach numbers, with particular focus on systems with Alfénic Mach numbers much smaller than sonic Mach numbers. We show that the shock compression ratio decreases for sufficiently large upstream magnetic fields, in agreement with theoretical predictions from previous works. Additionally, we examine the role of magnetic field strength on the shock front width. This work reinforces a growing body of work that suggest that modelling many astrophysical systems with only a fluid plasma description omits potentially important physics. 
    more » « less
  4. Abstract In a collisionless shock the energy of the directed flow is converted to heating and acceleration of charged particles, and to magnetic compression. In low-Mach number shocks the downstream ion distribution is made of directly transmitted ions. In higher-Mach number shocks ion reflection is important. With the increase of the Mach number, rippling develops, which is expected to affect ion dynamics. Using ion tracing in a model shock front, downstream distributions of ions are analyzed and compared for a planar stationary shock with an overshoot and a similar shock with ripples propagating along the shock front. It is shown that rippling results in the distributions, which are substantially broader and more diffuse in the phase space. Gyrotropization is sped up. Rippling is able to generate backstreaming ions, which are absent in the planar stationary case. 
    more » « less
  5. ABSTRACT

    In star-forming clouds, high velocity flow gives rise to large fluctuations of density. In this work, we explore the correlation between velocity magnitude (speed) and density. We develop an analytic formula for the joint probability distribution function (PDF) of density and speed, and discuss its properties. In order to develop an accurate model for the joint PDF, we first develop improved models of the marginalized distributions of density and speed. We confront our results with a suite of 12 supersonic isothermal simulations with resolution of $1024^3$ cells in which the turbulence is driven by 3 different forcing modes (solenoidal, mixed, and compressive) and 4 rms Mach numbers (1, 2, 4, 8). We show, that for transsonic turbulence, density and speed are correlated to a considerable degree and the simple assumption of independence fails to accurately describe their statistics. In the supersonic regime, the correlations tend to weaken with growing Mach number. Our new model of the joint and marginalized PDFs are a factor of 3 better than uncorrelated, and provides insight into this important process.

     
    more » « less