skip to main content


Title: Density and velocity correlations in isothermal supersonic turbulence
ABSTRACT

In star-forming clouds, high velocity flow gives rise to large fluctuations of density. In this work, we explore the correlation between velocity magnitude (speed) and density. We develop an analytic formula for the joint probability distribution function (PDF) of density and speed, and discuss its properties. In order to develop an accurate model for the joint PDF, we first develop improved models of the marginalized distributions of density and speed. We confront our results with a suite of 12 supersonic isothermal simulations with resolution of $1024^3$ cells in which the turbulence is driven by 3 different forcing modes (solenoidal, mixed, and compressive) and 4 rms Mach numbers (1, 2, 4, 8). We show, that for transsonic turbulence, density and speed are correlated to a considerable degree and the simple assumption of independence fails to accurately describe their statistics. In the supersonic regime, the correlations tend to weaken with growing Mach number. Our new model of the joint and marginalized PDFs are a factor of 3 better than uncorrelated, and provides insight into this important process.

 
more » « less
NSF-PAR ID:
10440601
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
525
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 297-310
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Simulations of isolated giant molecular clouds (GMCs) are an important tool for studying the dynamics of star formation, but their turbulent initial conditions (ICs) are uncertain. Most simulations have either initialized a velocity field with a prescribed power spectrum on a smooth density field (failing to model the full structure of turbulence) or ‘stirred’ turbulence with periodic boundary conditions (which may not model real GMC boundary conditions). We develop and test a new GMC simulation setup (called turbsphere) that combines advantages of both approaches: we continuously stir an isolated cloud to model the energy cascade from larger scales, and use a static potential to confine the gas. The resulting cloud and surrounding envelope achieve a quasi-equilibrium state with the desired hallmarks of supersonic ISM turbulence (e.g. density PDF and a ∼k−2 velocity power spectrum), whose bulk properties can be tuned as desired. We use the final stirred state as initial conditions for star formation simulations with self-gravity, both with and without continued driving and protostellar jet feedback, respectively. We then disentangle the respective effects of the turbulent cascade, simulation geometry, external driving, and gravity/MHD boundary conditions on the resulting star formation. Without external driving, the new setup obtains results similar to previous simple spherical cloud setups, but external driving can suppress star formation considerably in the new setup. Periodic box simulations with the same dimensions and turbulence parameters form stars significantly slower, highlighting the importance of boundary conditions and the presence or absence of a global collapse mode in the results of star formation calculations.

     
    more » « less
  2. Abstract

    We study the impact of compressibility on two-dimensional turbulent flows, such as those modeling astrophysical disks. We demonstrate that the direction of cascade undergoes continuous transition as the Mach numberMaincreases, from inverse atMa = 0, to direct atMa=. Thus, atMa1comparable amounts of energy flow from the pumping scale to large and small scales, in accord with previous data. For supersonic turbulence withMa1the cascade is direct, as in three dimensions, which results in multifractal density field. For that regime (Ma1) we derive a Kolmogorov-type law for potential forcing and obtain an explicit expression for the third order correlation tensor of the velocity. We further show that all third order structure functions are zero up to first order in the inertial range scales, which is in sharp contrast with incompressible turbulence where the third order structure function, that describes the energy flux associated with the energy cascade is non-zero. The properties of compressible turbulence have significant implications on the amplification of magnetic fields in conducting fluids. We thus demonstrate that imposing external magnetic field on compressible flows of conducting fluids allows to manipulate the flow producing possibly large changes even at small Mach numbers. Thus Zeldovich’s antidynamo theorem, by which atMa = 0 the magnetic field is zero in the steady state, must be used with caution. Real flows have finiteMaand, however small it is, for large enough values ofI, the magnetic flux through the disk, the magnetic field changes the flow appreciably, or rearranges it completely. This renders the limitMa → 0 singular for non-zero values ofI. Of particular interest is the effect of the density multifractality, atMa1which is relevant for astrophysical disks. We demonstrate that in that regime, in the presence of non-zeroIthe magnetic field energy is enhanced by a large factor as compared to its estimates based on the mean field. Finally, based on the insights described above, we propose a novel two-dimensional Burgers’ turbulence, whose three-dimensional counterpart is used for studies of the large-scale structure of the Universe, as a model for supersonic two-dimensional magnetohydrodynamic flows.

     
    more » « less
  3. We employ numerically implicit subgrid-scale modeling provided by the well-known streamlined upwind/Petrov–Galerkin stabilization for the finite element discretization of advection–diffusion problems in a Large Eddy Simulation (LES) approach. Whereas its original purpose was to provide sufficient algorithmic dissipation for a stable and convergent numerical method, more recently, it has been utilized as a subgrid-scale (SGS) model to account for the effect of small scales, unresolvable by the discretization. The freestream Mach number is 2.5, and direct comparison with a DNS database from our research group, as well as with experiments from the literature of adiabatic supersonic spatially turbulent boundary layers, is performed. Turbulent inflow conditions are generated via our dynamic rescaling–recycling approach, recently extended to high-speed flows. Focus is given to the assessment of the resolved Reynolds stresses. In addition, flow visualization is performed to obtain a much better insight into the physics of the flow. A weak compressibility effect is observed on thermal turbulent structures based on two-point correlations (IC vs. supersonic). The Reynolds analogy (u′ vs. t′) approximately holds for the supersonic regime, but to a lesser extent than previously observed in incompressible (IC) turbulent boundary layers, where temperature was assumed as a passive scalar. A much longer power law behavior of the mean streamwise velocity is computed in the outer region when compared to the log law at Mach 2.5. Implicit LES has shown very good performance in Mach 2.5 adiabatic flat plates in terms of the mean flow (i.e., Cf and UVD+). iLES significantly overpredicts the peak values of u′, and consequently Reynolds shear stress peaks, in the buffer layer. However, excellent agreement between the turbulence intensities and Reynolds shear stresses is accomplished in the outer region by the present iLES with respect to the external DNS database at similar Reynolds numbers. 
    more » « less
  4. ABSTRACT

    Owing to the complexity of turbulent magnetic fields, modelling the diffusion of cosmic rays is challenging. Based on the current understanding of anisotropic magnetohydrodynamic (MHD) turbulence, we use test particles to examine the cosmic rays’ superdiffusion in the direction perpendicular to the mean magnetic field. By changing Alfvén Mach number MA and sonic Mach number MS of compressible MHD simulations, our study covers a wide range of astrophysical conditions including subsonic warm gas phase and supersonic cold molecular gas. We show that freely streaming cosmic rays’ perpendicular displacement increases as 3/2 to the power of the time travelled along local magnetic field lines. This power-law index changes to 3/4 if the parallel propagation is diffusive. We find that the cosmic rays’ parallel mean free path decreases in a power-law relation of $M_\mathrm{ A}^{-2}$ in supersonic turbulence. We investigate the energy fraction of slow, fast, and Alfvénic modes and confirm the dominance of Alfvénic modes in the perpendicular superdiffusion. In particular, the energy fraction of fast mode, which is the main agent for pitch-angle scattering, increases with MA, but is insensitive to MS ≥ 2. Accordingly, our results suggest that the suppressed diffusion in supersonic molecular clouds arises primarily due to the variations of MA instead of MS.

     
    more » « less
  5. ABSTRACT

    Current observations favour that the massive ultraviolet-bright clumps with a median stellar mass of $\sim 10^7\, {\rm M}_{\odot }$, ubiquitously observed in z ∼ 1–3 galaxies, are star-forming regions formed in situ in galaxies. It has been proposed that they result from gas fragmentation due to gravitational instability of gas-rich, turbulent, and high-redshift discs. We bring support to this scenario by reporting the new discovery of giant molecular clouds (GMCs) in the strongly lensed, clumpy, main-sequence galaxy, A521-sys1, at z = 1.043. Its CO(4–3) emission was mapped with the Atacama Large Millimetre/submillimetre Array (ALMA) at an angular resolution of 0.19 × 0.16 arcsec2, reading down to 30 pc, thanks to gravitational lensing. We identified 14 GMCs, most being virialized, with $10^{5.9}-10^{7.9}\, {\rm M}_{\odot }$ masses and a median $800\, {\rm M}_{\odot }~\mathrm{pc}^{-2}$ molecular gas mass surface density, that are, respectively, 100 and 10 times higher than for nearby GMCs. They are also characterized by 10 times higher supersonic turbulence with a median Mach number of 60. They end up to fall above the Larson scaling relations, similarly to the GMCs in another clumpy z ≃ 1 galaxy, the Cosmic Snake, although differences between the two sets of high-redshift GMCs exist. Altogether they support that GMCs form with properties that adjust to the ambient interstellar medium conditions prevalent in the host galaxy whatever its redshift. The detected A521-sys1 GMCs are massive enough to be the parent gas clouds of stellar clumps, with a relatively high star formation efficiency per free-fall time of ∼11 per cent.

     
    more » « less