skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.

Title: Tropical forest restoration enriches vascular epiphyte recovery
Abstract Questions

Vascular epiphytes constitute a large proportion of tropical forest plant biodiversity, but are among the slowest plants to recolonize secondary forests. We asked whether tree planting for ecological restoration accelerates epiphyte community recovery. Does the spatial configuration of tree planting matter? What landscape contexts are most suitable for epiphyte restoration?


Restored pastures in premontane Coto Brus County, Puntarenas, Costa Rica.


We surveyed vascular epiphyte species growing on the lower trunks of 1083 trees in 13 experimental restoration sites. Each site contained three 0.25‐ha treatment plots: natural regeneration, trees planted in patches or ‘islands’ and tree plantations. Sites spanned elevational (1100–1430 m) and deforestation (4–94% forest cover within a 100‐m radius around each site) gradients.


Vascular epiphytes were twice as diverse in planted restoration plots (islands and plantations) as in natural regeneration; we observed this at the scale of individual host trees and within 0.25‐ha treatment plots. Contributing factors included that trees in planted restoration plots were larger, older, more abundant and composed of different species than trees in naturally regenerating plots. Epiphyte species richness increased with surrounding forest cover within 100–150 m of restoration plots. Epiphyte communities were also twice as diverse at higher (1330–1430 m) vs lower (1100–1290 m) elevation sites. Epiphyte groups responded differently to restoration treatments and landscape factors; ferns were responsible for higher species richness in planted restoration plots, whereas angiosperms drove elevation and forest cover effects.


Tree planting for ecological restoration enriched epiphyte communities compared to natural regeneration, likely because planted forests contained more, bigger and older trees. Tree island plantings were equally effective compared to larger and more expensive plantations. Restoration sites nearer to existing forests had richer epiphyte recolonization, likely because nearby forests provisioned restoration sites with angiosperm seeds. Collectively, results suggest that restoration practitioners can enrich epiphyte community development by planting trees in areas with higher surrounding forest cover, particularly at higher elevations.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Date Published:
Journal Name:
Applied Vegetation Science
Page Range / eLocation ID:
p. 508-517
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7‐ to 8‐year‐old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50‐m plots in four former pasture sites in southern Costa Rica:plantation– trees planted throughout the plot;applied nucleation/islands– trees planted in patches of different sizes; andnatural regeneration– no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition.Synthesis and applications: The less resource‐intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.

    more » « less
  2. Abstract

    Applied nucleation, mostly based upon planting tree islands, has been proposed as a cost‐effective strategy to meet ambitious global forest and landscape restoration targets.

    We review results from a 15‐year study, replicated at 15 sites in southern Costa Rica, that compares applied nucleation to natural regeneration and mixed‐species tree plantations as strategies to restore tropical forest. We have collected data on planted tree survival and growth, woody vegetation recruitment and structure, seed rain, litterfall, epiphytes, birds, bats and leaf litter arthropods.

    Our results indicate that applied nucleation and plantation restoration strategies are similarly effective in enhancing the recovery of most floral and faunal groups, vegetation structure and ecosystem functions, as compared to natural regeneration.

    Seed dispersal and woody recruitment are higher in applied nucleation and plantation than natural regeneration treatments; canopy cover has increased substantially in both natural regeneration and applied nucleation treatments; and mortality of planted N‐fixing tree species has increased in recent years. These trends have led to rapid changes in vegetation composition and structure and nutrient cycling.

    The applied nucleation strategy is cheaper than mixed‐species tree plantations, but there may be social obstacles to implementing this technique in agricultural landscapes, such as perceptions that the land is not being used productively.

    Applied nucleation is likely to be most effective in cases where: planted vegetation nuclei enhance seed dispersal and seedling establishment of other species; the spread of nuclei is not strongly inhibited by abiotic or biotic factors; and the approach is compatible with restoration goals and landowner preferences.

    Synthesis and applications. Results from our 15‐year, multi‐site study show that applied nucleation can be a cost‐effective strategy for facilitating tropical forest regeneration that holds promise for helping to meet large‐scale international forest restoration commitments.

    more » « less
  3. Abstract

    Large‐seeded, animal‐dispersed (LSAD) trees include some of the most valuable and threatened species in the tropics, but they are chronically underrepresented in regenerating forests. Toucans disperse many LSAD species, so attracting toucans to regenerating forests should help re‐establish more diverse tree communities. We ask: (1) What constitutes suitable toucan habitat in premontane southern Costa Rica? (2) How much do small‐scale restoration strategies influence toucan visitation compared to landscape‐scale habitat suitability outside of restoration sites? (3) How well does toucan visitation predict the richness of LSAD tree species recruiting into regenerating forests? We combined habitat suitability models with long‐term toucan observations and comprehensive tree recruitment surveys to assess these questions in a multi‐site forest restoration experiment. Restoration treatments included tree plantations, natural regeneration, and applied nucleation. Habitat suitability obtained by modeling for three sympatric toucan species was predicted by elevation and the extent and age of landscape forest cover. Within suitable landscapes, toucans visited areas restored via tree planting ≥5 yr sooner and ≥2× more often than plots restored via natural regeneration. Tree plantations in suitable toucan habitat at the landscape scale had LSAD tree recruitment communities that were 2–3× richer in species than plantations in poor toucan habitat, and 71% (15/21) of all recruiting LSAD tree species were found only in plantations where landscape habitat was suitable for the largest toucan,Ramphastos ambiguus. Results support a multi‐spatial‐scale model for predicting toucan‐mediated dispersal of LSAD trees. Tree planting increases toucan visitation and LSAD tree recruitment, but only within landscapes that represent suitable toucan habitat. More broadly, habitat suitability modeling for key seed dispersers can help prioritize restoration actions within heterogenous landscapes.

    more » « less
  4. Abstract

    Pioneer trees with fleshy fruits are typically planted in restoration projects to attract frugivores as a mean to increase dispersal and accelerate forest regeneration. However, differences in fruit traits of pioneer trees can potentially influence dispersal and their restoration outcomes.

    Here we investigated the effects of bird and plant traits, and distance to forest fragments, on the seed rain using a tree‐planting experiment replicated in 12 deforested sites in Brazil. Factors were fruit traits of pioneer trees (wind‐dispersed, bird‐dispersed with lipids or with carbohydrates and controls) and distance (10, 50, 300 m) from forest fragments.

    We found that density and richness of birds and seeds decreased exponentially with distance from fragments, yet these effects were minor compared to the effects of fruit traits on the structure of the seed rain.

    Overall, plots with fleshy fruited pioneers attracted much greater bird activity and seed dispersal than plots with wind‐dispersal pioneers and the controls. For instance, plots with carbohydrate‐rich fruits received more than twice the average species richness and density of birds and seeds of plots with lipid‐rich pioneer trees, surpassing wind‐dispersed pioneers by more than 80%, and controls by over 90%. Furthermore, the fruit trait treatments resulted in morphological shifts in the average traits of visiting birds. Significant differences in bill gape and flight capacities (wing‐loading) were associated with the differences in the seed rain associated with each treatment.

    Synthesis and applications. Understanding how trait‐matching processes mediating mutualistic seed dispersal by frugivores interact with distance‐dependent dispersal limitation on deforested tropical landscapes is critical for improving forest restoration efforts. This is especially relevant in the context of applied nucleation. As shown here, avian seed dispersal can thus be manipulated in restoration projects in order to increase connectivity and speed up forest recovery and the provision of the multiple ecosystem services that follow forest succession.

    more » « less
  5. Abstract

    Both dispersal‐ and niche‐based factors can impose major barriers on tree establishment. Our understanding of how these factors interact to determine recruitment rates is based primarily on findings from mature tropical forests, despite the fact that a majority of tropical forests are now secondary. Consequently, factors influencing seed limitation and the seed‐to‐seedling transition (STS) in disturbed landscapes, and how those factors shift during succession, are not well understood. We used a 3.5‐yr record of seed rain and seedling establishment to investigate factors influencing tree recruitment after a decade of recovery in a tropical wet forest restoration experiment in southern Costa Rica. We asked (1) how do a range of restoration treatments (natural regeneration, applied nucleation, plantation), canopy cover, and life‐history traits influence the STS and (2) how do seed and establishment limitation (lack of seed arrival or lack of seedling recruitment, respectively) influence vegetation recovery within restoration treatments as compared to remnant forest? We did not observe any differences in STS rates across restoration treatments. However, STS rates were lowest in adjacent later successional remnant forests, where seed source availability did not highly limit seed arrival, underscoring that niche‐based processes may increasingly limit recruitment as succession unfolds. Additionally, larger‐seeded species had consistently higher STS rates across treatments and remnant forests, though establishment limitation for these species was lowest in the remnant forests. Species were generally seed limited and almost all were establishment limited; these patterns were consistent across treatments. However, our results suggest that differences in recruitment rates could be driven by differential dispersal to treatments with higher canopy cover. We found evidence that barriers to recruitment shift during succession, with the influence of seed limitation, mediated by species‐level seed deposition rates, giving way to niche‐based processes. However, establishment limitation was lowest in the remnant forests for large‐seeded and late successional species, highlighting the importance of habitat specialization and life‐history traits in dictating recruitment dynamics. Overall, results demonstrate that active restoration approaches such as tree planting catalyze forest recovery, not only by decreasing components of seed limitation, but also by developing canopy cover that increases establishment rates of larger‐seeded species.

    more » « less