skip to main content


Title: Fruit traits of pioneer trees structure seed dispersal across distances on tropical deforested landscapes: Implications for restoration
Abstract

Pioneer trees with fleshy fruits are typically planted in restoration projects to attract frugivores as a mean to increase dispersal and accelerate forest regeneration. However, differences in fruit traits of pioneer trees can potentially influence dispersal and their restoration outcomes.

Here we investigated the effects of bird and plant traits, and distance to forest fragments, on the seed rain using a tree‐planting experiment replicated in 12 deforested sites in Brazil. Factors were fruit traits of pioneer trees (wind‐dispersed, bird‐dispersed with lipids or with carbohydrates and controls) and distance (10, 50, 300 m) from forest fragments.

We found that density and richness of birds and seeds decreased exponentially with distance from fragments, yet these effects were minor compared to the effects of fruit traits on the structure of the seed rain.

Overall, plots with fleshy fruited pioneers attracted much greater bird activity and seed dispersal than plots with wind‐dispersal pioneers and the controls. For instance, plots with carbohydrate‐rich fruits received more than twice the average species richness and density of birds and seeds of plots with lipid‐rich pioneer trees, surpassing wind‐dispersed pioneers by more than 80%, and controls by over 90%. Furthermore, the fruit trait treatments resulted in morphological shifts in the average traits of visiting birds. Significant differences in bill gape and flight capacities (wing‐loading) were associated with the differences in the seed rain associated with each treatment.

Synthesis and applications. Understanding how trait‐matching processes mediating mutualistic seed dispersal by frugivores interact with distance‐dependent dispersal limitation on deforested tropical landscapes is critical for improving forest restoration efforts. This is especially relevant in the context of applied nucleation. As shown here, avian seed dispersal can thus be manipulated in restoration projects in order to increase connectivity and speed up forest recovery and the provision of the multiple ecosystem services that follow forest succession.

 
more » « less
NSF-PAR ID:
10377398
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
57
Issue:
12
ISSN:
0021-8901
Page Range / eLocation ID:
p. 2329-2339
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seed distribution and deposition patterns around parent trees are strongly affected by functional traits and therefore influence the development of plant communities. To assess the limitations of seed dispersal and the extent to which diaspore and neighbouring parental traits explain seed rain, we used a 9-year seed data set based on 150 seed traps in a 25-ha area of a temperate forest in the Changbai Mountain. Among 480,598 seeds belonging to 12 families, 17 genera, and 26 species were identified, only 54% of the species with mature trees in the community were represented in seeds collected over the 9 years, indicating a limitation in seed dispersal. Understory species were most limited; overstory species were least limited. Species with wind-dispersed seed had the least limitation, while the lowest similarity in species richness was for animal-dispersed species followed by gravity-dispersed species; fleshy-fruited species had stronger dispersal limitations than dry-fruited species. Generalized linear mixed models showed that relative basal area had a significant positive effect on seed abundance in traps, while the contribution of diaspore traits was low for nearly all groups. These results suggest that tree traits had the strongest contribution to seed dispersal and deposition for all functional groups examined here. These findings strengthen the knowledge that tree traits are key in explaining seed deposition patterns, at least at the primary dispersal stage. This improved knowledge of sources of seeds that are dispersed could facilitate greater understanding of seedling and community dynamics in temperate forests. 
    more » « less
  2. Societal Impact Statement

    Fleshy fruits provide humans with many flavorful and nutritious crops. Understanding the diversity of these plants is fundamental to managing agriculture and food security in a changing world. This study surveyed fruit trait variation across species of tomato wild relatives and explored associations among color, size, shape, sugars, and acids. These wild tomato species native to South America can be interbred with the economically important cultivated tomato. Beyond its application to tomatoes, deepening our knowledge of how fruit traits evolve together is valuable to crop improvement efforts aimed at breeding more nutritious and appealing varieties of fruits.

    Summary

    Fleshy fruits display a striking diversity of traits, many of which are important for agriculture. The evolutionary drivers of this variation are not well understood, and most studies have relied on variation found in the wild. Few studies have explored this question on a fine‐grained scale with a group of recently diverged species while controlling for environmental effects.

    We developed the tomato clade as a novel system for fruit trait evolution research by presenting the first common garden‐based systematic survey of variation and phylogenetic signal in color, nutrition, and morphology traits across all 13 species of tomato wild relatives (Solanum sect.Lycopersicon). We laid the groundwork for further testing of potential evolutionary drivers by assessing patterns of clustering and correlation among disperser‐relevant fruit traits as well as historical climate variables.

    We found evidence of two distinct clusters of associated fruit traits defined by color, sugar type, and malic acid concentration. We also observed correlations between a fruit's external appearance and internal nutrient content that could function as honest signals to dispersers. Analyses of historical climate and soil variables revealed an association between red/orange/yellow fruits and high annual average temperature.

    Our results establish the tomato clade as a promising system for testing hypotheses on the drivers of divergence behind early‐stage fleshy fruit evolution, particularly selective pressure from frugivores.

     
    more » « less
  3. Premise

    We tested 25 classic and novel hypotheses regarding trait–origin, trait–trait, and trait–environment relationships to account for flora‐wide variation in life history, habit, and especially reproductive traits using a plastid DNA phylogeny of most native (96.6%, or 1494/1547 species) and introduced (87.5%, or 690/789 species) angiosperms in Wisconsin, USA.

    Methods

    We assembled data on life history, habit, flowering, dispersal, mating system, and occurrence across open/closed/mixed habitats across species in the state phylogeny. We used phylogenetically structured analyses to assess the strength and statistical significance of associations predicted by our models.

    Results

    Introduced species are more likely to be annual herbs, occupy open habitats, have large, visually conspicuous, hermaphroditic flowers, and bear passively dispersed seeds. Among native species, hermaphroditism is associated with larger, more conspicuous flowers; monoecy is associated with small, inconspicuous flowers and passive seed dispersal; and dioecy is associated with small, inconspicuous flowers and fleshy fruits. Larger flowers with more conspicuous colors are more common in open habitats, and in understory species flowering under open (spring) canopies; fleshy fruits are more common in closed habitats. Wind pollination may help favor dioecy in open habitats.

    Conclusions

    These findings support predictions regarding how breeding systems depend on flower size, flower color, and fruit type, and how those traits depend on habitat. This study is the first to combine flora‐wide phylogenies with complete trait databases and phylogenetically structured analyses to provide powerful tests of evolutionary hypotheses about reproductive traits and their variation with geographic source, each other, and environmental conditions.

     
    more » « less
  4. Abstract

    In degraded tropical landscapes, lack of seed dispersal can strongly limit recovery, and restoration interventions can overcome this barrier by attracting dispersers. However, seed dispersal patterns are typically studied over short time periods, thus the influences of temporal and spatial variability on seed arrival cannot be teased apart.

    The choice of management approach can have important implications for restoration‐mediated community reassembly. Accordingly, we used a 3.5‐year record of seed deposition in pre‐montane tropical wet forest in southern Costa Rica to examine how seed arrival differed between passive (natural regeneration) and active (applied nucleation, plantation) restoration after a decade of recovery, compared to remnant forest. We investigated: (a) how restoration treatments affected seed deposition rates and community composition; (b) how within‐plot heterogeneity of animal‐dispersed seed deposition varied by intervention; and (c) how interannual variation influenced animal‐dispersed seed arrival across treatments.

    Overall seed rain composition and diversity in restoration treatments was converging towards, but still differed substantially from, remnant forest (89.7%, 86.6% and 76.3% Shannon diversity recovered in applied nucleation, plantation and natural regeneration respectively).

    Within‐plot animal‐dispersed seed heterogeneity was similar in applied nucleation and remnant forest, 27.0% more heterogeneous in applied nucleation than plantation, and equivalent when comparing natural regeneration to either applied nucleation or plantation.

    In contrast to active interventions, animal‐dispersed tree and shrub communities did not differ year to year in natural regeneration, which may promote the assembly of relatively homogeneous plant communities at this successional stage.

    Synthesis and applications. Compared to natural regeneration, active restoration interventions: (a) catalysed the recovery of seed diversity (overall Shannon diversity 17.5% and 13.4% higher in applied nucleation and plantation respectively), (b) shifted seed community composition towards remnant forest more rapidly (overall Shannon diversity 13.4% and 10.2% closer), (c) almost doubled the proportion of later‐successional tree species arriving, and (d) had seed communities that differed year to year—a pattern not observed in natural regeneration. Finally, applied nucleation was the only intervention where seed arrival was as spatially heterogeneous as remnant forest, highlighting that this approach may facilitate the recovery of specific natural dispersal processes.

     
    more » « less
  5. Abstract

    Exploitation competition occurs when one group of organisms reduces the availability of a resource for another group of organisms. For instance, plants produce a certain number of fruits for seed dispersal by fruit‐eating animals (hereafter frugivores), and fruit consumption by one group of frugivores can reduce the number of fruits available for other frugivores. However, it is uncertain whether exploitation competition is common among frugivores, particularly in novel ecosystems, where food resources are generally thought to be abundant and invasive species are dietary generalists. In a novel ecosystem in Hawai‘i, we used gut passage experiments with captive birds to identify roles of introduced frugivores and found they were either distinctly seed dispersers or predators. We then experimentally tested how frugivory by seed predators influenced frugivory by seed dispersers. Specifically, we used exclosures around fruiting plants that blocked seed predator access, while permitting seed disperser access, and we had two control treatments that allowed for access by all frugivores (n = 139 plants). When seed predators were excluded from plants, there was more frugivory by dispersers compared to controls, and results varied by year and plant species. Overall, we show that introduced frugivores occupied distinct ecological roles (seed predator or seed disperser), exploitation competition occurred between these introduced frugivore groups, and seed predators had both direct (via seed destruction) and indirect (via reduction in frugivory by dispersers) effects on seed dispersal. Thus, in this novel ecosystem, multiple frugivory is subtractive, and competition for fruit between introduced seed predators and seed dispersers scales up to affect invasions and the conservation of native flora.

     
    more » « less