skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: No evidence of physiological declines with age in an extremely long-lived fish
Abstract Although the pace of senescence varies considerably, the physiological systems that contribute to different patterns of senescence are not well understood, especially in long-lived vertebrates. Long-lived bony fish (i.e., Class Osteichthyes) are a particularly useful model for studies of senescence because they can readily be aged and exhibit some of the longest lifespans among vertebrates. In this study we examined the potential relationship between age and multiple physiological systems including: stress levels, immune function, and telomere length in individuals ranging in age from 2 to 99 years old in bigmouth buffalo ( Ictiobus cyprinellus ), the oldest known freshwater teleost fish. Contrary to expectation, we did not find any evidence for age-related declines in these physiological systems. Instead, older fish appeared to be less stressed and had greater immunity than younger fish, suggesting age-related improvements rather than declines in these systems. There was no significant effect of age on telomeres, but individuals that may be more stressed had shorter telomeres. Taken together, these findings suggest that bigmouth buffalo exhibit negligible senescence in multiple physiological systems despite living for nearly a century.  more » « less
Award ID(s):
1656194
PAR ID:
10245275
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gray, David A (Ed.)
    The lifetime fitness of an individual is determined by the integrated results of survival and reproduction. Improving our understanding of variation in survival senescence within and between species will therefore provide greater insight into the evolution of different life history strategies. Survival is influenced by multiple factors, consequently, variation in patterns of senescence is expected between individuals and sexes and across mating systems and the continuum of life history strategies. To date there is little consensus regarding the mechanisms driving the evolution of sex differences in actuarial senescence, necessitating the need for studies of sex-specific senescence for species across a wide range of life histories. The Weddell seal is a species of long-lived mammal that displays moderate polygyny and little sexual size dimorphism, which makes it an unusual species compared to other long-lived mammals that share the polygynous mating system. Here we used 37 years of data for 1,879 female and 1,474 male Weddell seals from Erebus Bay, Antarctica, to estimate and compare sex-specific patterns of survival rates using basis splines which allow flexible modeling of age-specific patterns. We found that males had lower rates of survival throughout life and higher rates of actuarial senescence after early adulthood compared to females. These results add to our understanding of sex-specific survival rates in the species and contribute information for a long-lived, polygynous species that should aid in achieving a broader understanding of aging between sexes and across the tree of life. 
    more » « less
  2. Abstract Actuarial senescence (called ‘senescence’ hereafter) often shows broad variation at the intraspecific level. Phenotypic plasticity likely plays a central role in among‐individual heterogeneity in senescence rate (i.e. the rate of increase in mortality with age), although our knowledge on this subject is still very fragmentary. Polyphenism—the unique sub‐type of phenotypic plasticity where several discrete phenotypes are produced by the same genotype—may provide excellent study systems to investigate if and how plasticity affects the rate of senescence in nature.In this study, we investigated whether facultative paedomorphosis influences the rate of senescence in a salamander,Ambystoma mavortium nebulosum. Facultative paedomorphosis, a unique form of polyphenism found in dozens of urodele species worldwide, leads to the production of two discrete, environmentally induced phenotypes: metamorphic and paedomorphic individuals. We leveraged an extensive set of capture–recapture data (8948 individuals, 24 years of monitoring) that were analysed using multistate capture–recapture models and Bayesian age‐dependent survival models.Multistate models revealed that paedomorphosis was the most common developmental pathway used by salamanders in our study system. Bayesian age‐dependent survival models then showed that paedomorphs have accelerated senescence in both sexes and shorter adult lifespan (in females only) compared to metamorphs. In paedomorphs, senescence rate and adult lifespan also varied among ponds and individuals. Females with good body condition and high lifetime reproductive success had slower senescence and longer lifespan. Late‐breeding females also lived longer but showed a senescence rate similar to that of early‐breeding females. Moreover, males with good condition had longer lifespan than males with poor body condition, although they had similar senescence rates. In addition, late‐breeding males lived longer but, unexpectedly, had higher senescence than early‐breeding males.Overall, our work provides one of the few empirical cases suggesting that environmentally cued polyphenism could affect the senescence of a vertebrate in nature, thus providing insights on the ecological and evolutionary consequences of developmental plasticity on ageing. 
    more » « less
  3. Abstract The mechanisms that underlie senescence are not well understood in insects. Telomeres are conserved repetitive sequences at chromosome ends that protect DNA during replication. In many vertebrates, telomeres shorten during cell division and in response to stress and are often used as a cellular marker of senescence. However, little is known about telomere dynamics across the lifespan in invertebrates. We measured telomere length in larvae, prepupae, pupae, and adults of two species of solitary bees,Osmia lignariaandMegachile rotundata. Contrary to our predictions, telomere length was longer in later developmental stages in bothO. lignariaandM. rotundata.Longer telomeres occurred after emergence from diapause, which is a physiological state with increased tolerance to stress. InO. lignaria, telomeres were longer in adults when they emerged following diapause. InM. rotundata, telomeres were longer in the pupal stage and subsequent adult stage, which occurs after prepupal diapause. In both species, telomere length did not change during the 8 months of diapause. Telomere length did not differ by mass similarly across species or sex. We also did not see a difference in telomere length after adultO. lignariawere exposed to a nutritional stress, nor did length change during their adult lifespan. Taken together, these results suggest that telomere dynamics in solitary bees differ from what is commonly reported in vertebrates and suggest that insect diapause may influence telomere dynamics. 
    more » « less
  4. Abstract Detecting declines and quantifying extinction risk of long‐lived, highly fecund vertebrates, including fishes, reptiles, and amphibians, can be challenging. In addition to the false notion that large clutches always buffer against population declines, the imperiled status of long‐lived species can often be masked by extinction debt, wherein adults persist on the landscape for several years after populations cease to be viable. Here we develop a demographic model for the eastern hellbender (Cryptobranchus alleganiensis), an imperiled aquatic salamander with paternal care. We examined the individual and interactive effects of three of the leading threats hypothesized to contribute to the species' demise: habitat loss due to siltation, high rates of nest failure, and excess adult mortality caused by fishing and harvest. We parameterized the model using data on their life history and reproductive ecology to model the fates of individual nests and address multiple sources of density‐dependent mortality under both deterministic and stochastic environmental conditions. Our model suggests that high rates of nest failure observed in the field are sufficient to drive hellbender populations toward a geriatric age distribution and eventually to localized extinction but that this process takes decades. Moreover, the combination of limited nest site availability due to siltation, nest failure, and stochastic adult mortality can interact to increase the likelihood and pace of extinction, which was particularly evident under stochastic scenarios. Density dependence in larval survival and recruitment can severely hamper a population's ability to recover from declines. Our model helps to identify tipping points beyond which extinction becomes certain and management interventions become necessary. Our approach can be generalized to understand the interactive effects of various threats to the extinction risk of other long‐lived vertebrates. As we face unprecedented rates of environmental change, holistic approaches incorporating multiple concurrent threats and their impacts on different aspects of life history will be necessary to proactively conserve long‐lived species. 
    more » « less
  5. ABSTRACT Telomeres, protective caps at the ends of linear chromosomes, are frequently found to shorten with age. Telomere length is commonly measured in wild populations to investigate age‐related changes in somatic integrity and is considered a hallmark of ageing. Despite interest, there is no clear picture regarding sex differences in telomere length or rate of attrition across species. Bats are of considerable interest in studies of ageing and telomeres, owing to their remarkable longevity and the absence of age‐associated telomere attrition observed in some species. Additionally, multiple bat species show evidence of sex differences in longevity. However, few studies of bat telomeres have included both sexes. We collected DNA from wild‐caught males and females of the highly polygynous greater spear‐nosed bat,Phyllostomus hastatus, in which mortality is strongly male‐biased, and measured relative telomere lengths. We found that, while telomeres were shorter in older bats, there was no evidence of shorter telomeres in males. In fact, males tended to have longer telomeres. This runs counter to our prediction of shorter telomeres in the shorter‐lived sex but is not completely unexpected in light of other observations, including that of shorter telomeres in longer lived species. 
    more » « less