skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Telomere length is longer following diapause in two solitary bee species
Abstract The mechanisms that underlie senescence are not well understood in insects. Telomeres are conserved repetitive sequences at chromosome ends that protect DNA during replication. In many vertebrates, telomeres shorten during cell division and in response to stress and are often used as a cellular marker of senescence. However, little is known about telomere dynamics across the lifespan in invertebrates. We measured telomere length in larvae, prepupae, pupae, and adults of two species of solitary bees,Osmia lignariaandMegachile rotundata. Contrary to our predictions, telomere length was longer in later developmental stages in bothO. lignariaandM. rotundata.Longer telomeres occurred after emergence from diapause, which is a physiological state with increased tolerance to stress. InO. lignaria, telomeres were longer in adults when they emerged following diapause. InM. rotundata, telomeres were longer in the pupal stage and subsequent adult stage, which occurs after prepupal diapause. In both species, telomere length did not change during the 8 months of diapause. Telomere length did not differ by mass similarly across species or sex. We also did not see a difference in telomere length after adultO. lignariawere exposed to a nutritional stress, nor did length change during their adult lifespan. Taken together, these results suggest that telomere dynamics in solitary bees differ from what is commonly reported in vertebrates and suggest that insect diapause may influence telomere dynamics.  more » « less
Award ID(s):
2311952 1557940 1826834
PAR ID:
10507631
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Pathogens and lack of floral resources interactively impair global pollinator health. However, epidemiological and nutritional studies aimed at understanding bee declines have historically focused on social species, with limited evaluations of solitary bees. Here, we asked whether Crithidia bombi , a trypanosomatid gut pathogen known to infect bumble bees, could infect the solitary bees Osmia lignaria (females) and Megachile rotundata (males), and whether nutritional stress influenced infection patterns and bee survival. We found that C. bombi was able to infect both solitary bee species, with 59% of O. lignaria and 29% of M. rotundata bees experiencing pathogen replication 5–11 days following inoculation. Moreover, access to pollen resulted in O. lignaria living longer, although it did not influence M. rotundata survival. Access to pollen did not affect infection probability or resulting pathogen load in either species. Similarly, inoculating with the pathogen did not drive survival patterns in either species during the 5–11-day laboratory assays. Our results demonstrate that solitary bees can be hosts of a known bumble bee pathogen, and that access to pollen is an important contributing factor for bee survival, thus expanding our understanding of factors contributing to solitary bee health. 
    more » « less
  2. Stress can influence lifespan in both positive and negative ways, depending on exposure intensity and duration. However, mechanisms driving positive stress effects on lifespan remain poorly understood. Prolonged hypoxia extends the lifespan of overwintering prepupal Megachile rotundata. Here, we explore telomere length and reduced oxidative stress as potential mechanisms of this extended lifespan. We hypothesized high antioxidant capacity under hypoxia reduces oxidative damage and telomere loss. We exposed prepupae to 10, 21 or 24% oxygen for up to 9 months and measured monthly survival, telomere length, antioxidant capacity, and lipid peroxidation across treatment duration for prepupae and adults. After 9 months of exposure, survival was highest in hypoxia and lowest in hyperoxia. Telomere length did not differ among oxygen treatments but increased in adults compared to prepupae. Total antioxidant capacity and lipid peroxidation showed no significant differences among oxygen treatments, suggesting compensatory responses to maintain baseline oxidative levels. 
    more » « less
  3. ABSTRACT Variable spring temperatures may expose developing insects to sublethal conditions, resulting in long-term consequences. The alfalfa leafcutting bee, Megachile rotundata, overwinters as a prepupa inside a brood cell, resuming development in spring. During these immobile stages of development, bees must tolerate unfavorable temperatures. In this study, we tested how exposure to low temperature stress during development affects subsequent reproduction and characteristics of the F1 generation. Developing male and female M. rotundata were exposed to either constant (6°C) or fluctuating (1 h day−1 at 20°C) low temperature stress for 1 week, during the pupal stage, to mimic a spring cold snap. Treated adults were marked and released into field cages, and reproductive output was compared with that of untreated control bees. Exposure to low temperatures during the pupal stage had mixed effects on reproduction and offspring characteristics. Females treated with fluctuating low temperatures were more likely to nest compared with control bees or those exposed to constant low temperature stress. Sublethal effects may have contributed to low nesting rates of bees exposed to constant low temperatures. Females from that group that were able to nest had fewer, larger offspring with high viability, suggesting a trade-off. Interestingly, offspring of bees exposed to fluctuating low temperatures were more likely to enter diapause, indicating that thermal history of parents, even during development, is an important factor in diapause determination. 
    more » « less
  4. null (Ed.)
    Abstract Although the pace of senescence varies considerably, the physiological systems that contribute to different patterns of senescence are not well understood, especially in long-lived vertebrates. Long-lived bony fish (i.e., Class Osteichthyes) are a particularly useful model for studies of senescence because they can readily be aged and exhibit some of the longest lifespans among vertebrates. In this study we examined the potential relationship between age and multiple physiological systems including: stress levels, immune function, and telomere length in individuals ranging in age from 2 to 99 years old in bigmouth buffalo ( Ictiobus cyprinellus ), the oldest known freshwater teleost fish. Contrary to expectation, we did not find any evidence for age-related declines in these physiological systems. Instead, older fish appeared to be less stressed and had greater immunity than younger fish, suggesting age-related improvements rather than declines in these systems. There was no significant effect of age on telomeres, but individuals that may be more stressed had shorter telomeres. Taken together, these findings suggest that bigmouth buffalo exhibit negligible senescence in multiple physiological systems despite living for nearly a century. 
    more » « less
  5. null (Ed.)
    The mechanisms that contribute to variation in lifetime reproductive success are not well understood. One possibility is that telomeres, conserved DNA sequences at chromosome ends that often shorten with age and stress exposures, may reflect differences in vital processes or influence fitness. Telomere length often predicts longevity, but longevity is only one component of fitness and little is known about how lifetime reproductive success is related to telomere dynamics in wild populations. We examined the relationships between telomere length beginning in early life, telomere loss into adulthood and lifetime reproductive success in free-living house sparrows ( Passer domesticus ). We found that females, but not males, with longer telomeres during early life had higher lifetime reproductive success, owing to associations with longevity and not reproduction per year or attempt. Telomeres decreased with age in both sexes, but telomere loss was not associated with lifetime reproductive success. In this species, telomeres may reflect differences in quality or condition rather than the pace of life, but only in females. Sexually discordant selection on telomeres is expected to influence the stability and maintenance of within population variation in telomere dynamics and suggests that any role telomeres play in mediating life-history trade-offs may be sex specific. 
    more » « less