skip to main content


Title: Crossing regimes of temperature dependence in animal movement
Abstract

A pressing challenge in ecology is to understand the effects of changing global temperatures on food web structure and dynamics. The stability of these complex ecological networks largely depends on how predator–prey interactions may respond to temperature changes. Because predators and prey rely on their velocities to catch food or avoid being eaten, understanding how temperatures may affect animal movement is central to this quest. Despite our efforts, we still lack a mechanistic understanding of how the effect of temperature on metabolic processes scales up to animal movement and beyond. Here, we merge a biomechanical approach, the Metabolic Theory of Ecology and empirical data to show that animal movement displays multiple regimes of temperature dependence. We also show that crossing these regimes has important consequences for population dynamics and stability, which depend on the parameters controlling predator–prey interactions. We argue that this dependence upon interaction parameters may help explain why experimental work on the temperature dependence of interaction strengths has so far yielded conflicting results. More importantly, these changes in the temperature dependence of animal movement can have consequences that go well beyond ecological interactions and affect, for example, animal communication, mating, sensory detection, and any behavioral modality dependent on the movement of limbs. Finally, by not taking into account the changes in temperature dependence reported here we might not be able to properly forecast the impact of global warming on ecological processes and propose appropriate mitigation action when needed.

 
more » « less
NSF-PAR ID:
10245321
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
22
Issue:
5
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1722-1736
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction

    Changes in temperature can fundamentally transform how species interact, causing wholesale shifts in ecosystem dynamics and stability. Yet we still have a limited understanding of how temperature-dependence in physiology drives temperature-dependence in species-interactions. For predator-prey interactions, theory predicts that increases in temperature drive increases in metabolism and that animals respond to this increased energy expenditure by ramping up their food consumption to meet their metabolic demand. However, if consumption does not increase as rapidly with temperature as metabolism, increases in temperature can ultimately cause a reduction in consumer fitness and biomass via starvation.

    Methods

    Here we test the hypothesis that increases in temperature cause more rapid increases in metabolism than increases in consumption using the California spiny lobster (Panulirus interruptus) as a model system. We acclimated individual lobsters to temperatures they experience sacross their biogeographic range (11, 16, 21, or 26°C), then measured whether lobster consumption rates are able to meet the increased metabolic demands of rising temperatures.

    Results and discussion

    We show positive effects of temperature on metabolism and predation, but in contrast to our hypothesis, rising temperature caused lobster consumption rates to increase at a faster rate than increases in metabolic demand, suggesting that for the mid-range of temperatures, lobsters are capable of ramping up consumption rates to increase their caloric demand. However, at the extreme ends of the simulated temperatures, lobster biology broke down. At the coldest temperature, lobsters had almost no metabolic activity and at the highest temperature, 33% of lobsters died. Our results suggest that temperature plays a key role in driving the geographic range of spiny lobsters and that spatial and temporal shifts in temperature can play a critical role in driving the strength of species interactions for a key predator in temperate reef ecosystems.

     
    more » « less
  2. Abstract

    Global warming over the next century is likely to alter the energy demands of consumers and thus the strengths of their interactions with their resources. The subsequent cascading effects on population biomasses could have profound effects on food web stability. One key mechanism by which organisms can cope with a changing environment is phenotypic plasticity, such as acclimation to warmer conditions through reversible changes in their physiology. Here, we measured metabolic rates and functional responses in laboratory experiments for a widespread predator–prey pair of freshwater invertebrates, sampled from across a natural stream temperature gradient in Iceland (4–18℃). This enabled us to parameterize a Rosenzweig–MacArthur population dynamical model to study the effect of thermal acclimation on the persistence of the predator–prey pairs in response to warming. Acclimation to higher temperatures either had neutral effects or reduced the thermal sensitivity of both metabolic and feeding rates for the predator, increasing its energetic efficiency. This resulted in greater stability of population dynamics, as acclimation to higher temperatures increased the biomass of both predator and prey populations with warming. These findings indicate that phenotypic plasticity can act as a buffer against the impacts of environmental warming. As a consequence, predator–prey interactions between ectotherms may be less sensitive to future warming than previously expected, but this requires further investigation across a broader range of interacting species.

     
    more » « less
  3. Abstract

    Global warming is one of the greatest threats to the persistence of populations: increased metabolic demands should strengthen pairwise species interactions, which could destabilize food webs at the higher organizational levels. Quantifying the temperature dependence of consumer–resource interactions is thus essential for predicting ecological responses to warming.

    We explored feeding interactions between different predator–prey pairs in controlled‐temperature chambers and in a system of naturally heated streams. We found consistent temperature dependence of attack rates across experimental settings, though the magnitude and activation energy of attack rate were specific to each predator, which varied in mobility and foraging mode.

    We used these parameters along with metabolic rate measurements to estimate energetic efficiency and population abundance with warming. Energetic efficiency accurately estimated field abundance of a mobile predator that struggled to meet its metabolic demands, but was a poor predictor for a sedentary predator that operated well below its energetic limits. Temperature effects on population abundance may thus be strongly dependent on whether organisms are regulated by their own energy intake or interspecific interactions.

    Given the widespread use of functional response parameters in ecological modelling, reconciling outcomes from laboratory and field studies increases the confidence and precision with which we can predict warming impacts on natural systems.

     
    more » « less
  4. Abstract

    Landscapes of fear describe a spatial representation of an animal's perceived risk of predation and the associated foraging costs, while energy landscapes describe the spatial representation of their energetic cost of moving and foraging. Fear landscapes are often dynamic and change based on predator presence and behaviour, and variation in abiotic conditions that modify risk. Energy landscapes are also dynamic and can change across diel, seasonal, and climatic timescales based on variability in temperature, snowfall, wind/current speeds, etc.

    Recently, it was suggested that fear and energy landscapes should be integrated. In this paradigm, the interaction between landscapes relates to prey being forced to use areas of the energy landscape they would avoid if risk were not a factor. However, dynamic energy landscapes experienced by predators must also be considered since they can affect their ability to forage, irrespective of variation in prey behaviour. We propose an additional component to the fear and dynamic energy landscape paradigm that integrates landscapes of both prey and predators, where predator foraging behaviour is modulated by changes in their energyscape.

    Specifically, we integrate the predator's energy landscape into foraging theory that predicts prey patch‐leaving decisions under the threat of predation. We predict that as a predator's energetic cost of foraging increases in a habitat, then the prey's foraging cost of predation and patch quitting harvest rate, will decrease. Prey may also decrease their vigilance in response to increased energetic foraging costs for predators, which will lower giving‐up densities of prey.

    We then provide examples in terrestrial, aerial, and marine ecosystems where we might expect to see these effects. These include birds and sharks which use updrafts that vary based on wind and current speeds, tidal state, or temperature, and terrestrial predators (e.g. wolves) whose landscapes vary seasonally with snow depth or ice cover which may influence their foraging success and even diet selection.

    A predator perspective is critical to considering the combination of these landscapes and their ecological consequences. Dynamic predator energy landscapes could add an additional spatiotemporal component to risk effects, which may cascade through food webs.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  5. Summary

    Plant–herbivore interactions have evolved in response to coevolutionary dynamics, along with selection driven by abiotic conditions. We examine how abiotic factors influence trait expression in both plants and herbivores to evaluate how climate change will alter this long‐standing interaction. The paleontological record documents increased herbivory during periods of global warming in the deep past. In phylogenetically corrected meta‐analyses, we find that elevated temperatures, CO2concentrations, drought stress and nutrient conditions directly and indirectly induce greater food consumption by herbivores. Additionally, elevated CO2delays herbivore development, but increased temperatures accelerate development. For annual plants, higher temperatures, CO2and drought stress increase foliar herbivory. Our meta‐analysis also suggests that greater temperatures and drought may heighten florivory in perennials. Human actions are causing concurrent shifts in CO2, temperature, precipitation regimes and nitrogen deposition, yet few studies evaluate interactions among these changing conditions. We call for additional multifactorial studies that simultaneously manipulate multiple climatic factors, which will enable us to generate more robust predictions of how climate change could disrupt plant–herbivore interactions. Finally, we consider how shifts in insect and plant phenology and distribution patterns could lead to ecological mismatches, and how these changes may drive future adaptation and coevolution between interacting species.

     
    more » « less