skip to main content


Title: Thermal acclimation increases the stability of a predator–prey interaction in warmer environments
Abstract

Global warming over the next century is likely to alter the energy demands of consumers and thus the strengths of their interactions with their resources. The subsequent cascading effects on population biomasses could have profound effects on food web stability. One key mechanism by which organisms can cope with a changing environment is phenotypic plasticity, such as acclimation to warmer conditions through reversible changes in their physiology. Here, we measured metabolic rates and functional responses in laboratory experiments for a widespread predator–prey pair of freshwater invertebrates, sampled from across a natural stream temperature gradient in Iceland (4–18℃). This enabled us to parameterize a Rosenzweig–MacArthur population dynamical model to study the effect of thermal acclimation on the persistence of the predator–prey pairs in response to warming. Acclimation to higher temperatures either had neutral effects or reduced the thermal sensitivity of both metabolic and feeding rates for the predator, increasing its energetic efficiency. This resulted in greater stability of population dynamics, as acclimation to higher temperatures increased the biomass of both predator and prey populations with warming. These findings indicate that phenotypic plasticity can act as a buffer against the impacts of environmental warming. As a consequence, predator–prey interactions between ectotherms may be less sensitive to future warming than previously expected, but this requires further investigation across a broader range of interacting species.

 
more » « less
NSF-PAR ID:
10449497
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
27
Issue:
16
ISSN:
1354-1013
Page Range / eLocation ID:
p. 3765-3778
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Global warming is one of the greatest threats to the persistence of populations: increased metabolic demands should strengthen pairwise species interactions, which could destabilize food webs at the higher organizational levels. Quantifying the temperature dependence of consumer–resource interactions is thus essential for predicting ecological responses to warming.

    We explored feeding interactions between different predator–prey pairs in controlled‐temperature chambers and in a system of naturally heated streams. We found consistent temperature dependence of attack rates across experimental settings, though the magnitude and activation energy of attack rate were specific to each predator, which varied in mobility and foraging mode.

    We used these parameters along with metabolic rate measurements to estimate energetic efficiency and population abundance with warming. Energetic efficiency accurately estimated field abundance of a mobile predator that struggled to meet its metabolic demands, but was a poor predictor for a sedentary predator that operated well below its energetic limits. Temperature effects on population abundance may thus be strongly dependent on whether organisms are regulated by their own energy intake or interspecific interactions.

    Given the widespread use of functional response parameters in ecological modelling, reconciling outcomes from laboratory and field studies increases the confidence and precision with which we can predict warming impacts on natural systems.

     
    more » « less
  2. Cooke, Steve (Ed.)
    Abstract Models of species response to climate change often assume that physiological traits are invariant across populations. Neglecting potential intraspecific variation may overlook the possibility that some populations are more resilient or susceptible than others, creating inaccurate predictions of climate impacts. In addition, phenotypic plasticity can contribute to trait variation and may mediate sensitivity to climate. Quantifying such forms of intraspecific variation can improve our understanding of how climate can affect ecologically important species, such as invasive predators. Here, we quantified thermal performance (tolerance, acclimation capacity, developmental traits) across seven populations of the predatory marine snail (Urosalpinx cinerea) from native Atlantic and non-native Pacific coast populations in the USA. Using common garden experiments, we assessed the effects of source population and developmental acclimation on thermal tolerance and developmental traits of F1 snails. We then estimated climate sensitivity by calculating warming tolerance (thermal tolerance − habitat temperature), using field environmental data. We report that low-latitude populations had greater thermal tolerance than their high latitude counterparts. However, these same low-latitude populations exhibited decreased thermal tolerance when exposed to environmentally realistic higher acclimation temperatures. Low-latitude native populations had the greatest climate sensitivity (habitat temperatures near thermal limits). In contrast, invasive Pacific snails had the lowest climate sensitivity, suggesting that these populations are likely to persist and drive negative impacts on native biodiversity. Developmental rate significantly increased in embryos sourced from populations with greater habitat temperature but had variable effects on clutch size and hatching success. Thus, warming can produce widely divergent responses within the same species, resulting in enhanced impacts in the non-native range and extirpation in the native range. Broadly, our results highlight how intraspecific variation can alter management decisions, as this may clarify whether management efforts should be focused on many or only a few populations. 
    more » « less
  3. Abstract

    A pressing challenge in ecology is to understand the effects of changing global temperatures on food web structure and dynamics. The stability of these complex ecological networks largely depends on how predator–prey interactions may respond to temperature changes. Because predators and prey rely on their velocities to catch food or avoid being eaten, understanding how temperatures may affect animal movement is central to this quest. Despite our efforts, we still lack a mechanistic understanding of how the effect of temperature on metabolic processes scales up to animal movement and beyond. Here, we merge a biomechanical approach, the Metabolic Theory of Ecology and empirical data to show that animal movement displays multiple regimes of temperature dependence. We also show that crossing these regimes has important consequences for population dynamics and stability, which depend on the parameters controlling predator–prey interactions. We argue that this dependence upon interaction parameters may help explain why experimental work on the temperature dependence of interaction strengths has so far yielded conflicting results. More importantly, these changes in the temperature dependence of animal movement can have consequences that go well beyond ecological interactions and affect, for example, animal communication, mating, sensory detection, and any behavioral modality dependent on the movement of limbs. Finally, by not taking into account the changes in temperature dependence reported here we might not be able to properly forecast the impact of global warming on ecological processes and propose appropriate mitigation action when needed.

     
    more » « less
  4. Abstract

    Organisms have the capacity to alter their physiological response to warming through acclimation or adaptation, but the consequence of this metabolic plasticity for energy flow through food webs is currently unknown, and a generalisable framework does not exist for modelling its ecosystem-level effects. Here, using temperature-controlled experiments on stream invertebrates from a natural thermal gradient, we show that the ability of organisms to raise their metabolic rate following chronic exposure to warming decreases with increasing body size. Chronic exposure to higher temperatures also increases the acute thermal sensitivity of whole-organismal metabolic rate, independent of body size. A mathematical model parameterised with these findings shows that metabolic plasticity could account for 60% higher ecosystem energy flux with just +2 °C of warming than a traditional model based on ecological metabolic theory. This could explain why long-term warming amplifies ecosystem respiration rates through time in recent mesocosm experiments, and highlights the need to embed metabolic plasticity in predictive models of global warming impacts on ecosystems.

     
    more » « less
  5. Abstract

    Adaptive plasticity in thermal tolerance traits may buffer organisms against changing temperatures, making such responses of particular interest in the face of global climate change. Although population variation is integral to the evolvability of this trait, many studies inferring proxies of physiological vulnerability from thermal tolerance traits extrapolate data from one or a few populations to represent the species. Estimates of physiological vulnerability can be further complicated by methodological effects associated with experimental design. We evaluated how populations varied in their acclimation capacity (i.e., the magnitude of plasticity) for critical thermal maximum (CTmax) in two species of tailed frogs (Ascaphidae), cold‐stream specialists. We used the estimates of acclimation capacity to infer physiological vulnerability to future warming. We performed CTmax experiments on tadpoles from 14 populations using a fully factorial experimental design of two holding temperatures (8 and 15°C) and two experimental starting temperatures (8 and 15°C). This design allowed us to investigate the acute effects of transferring organisms from one holding temperature to a different experimental starting temperature, as well as fully acclimated responses by using the same holding and starting temperature. We found that most populations exhibited beneficial acclimation, where CTmax was higher in tadpoles held at a warmer temperature, but populations varied markedly in the magnitude of the response and the inferred physiological vulnerability to future warming. We also found that the response of transferring organisms to different starting temperatures varied substantially among populations, although accounting for acute effects did not greatly alter estimates of physiological vulnerability at the species level or for most populations. These results underscore the importance of sampling widely among populations when inferring physiological vulnerability, as population variation in acclimation capacity and thermal sensitivity may be critical when assessing vulnerability to future warming.

     
    more » « less