skip to main content


Title: Microbial food web dynamics in the oceanic Gulf of Mexico
Abstract Phytoplankton growth and microzooplankton grazing rates were measured in repeated profiles of dilution experiments incubated in situ on a drift array in order to assess microbial production and food web characteristics in the oligotrophic bluefin tuna spawning habitat of the Gulf of Mexico (May peak spawning seasons, 2017–2018). Grazing often exceeded growth with the processes more balanced overall in the surface mixed layer, but biomass accumulated in the mid-euphotic zone. Community production estimates (260–500 mg C m−2 day−1) were low compared to similar open-ocean studies in the Pacific Ocean. Prochlorococcus was a consistent major contributor (113–204 mg C m−2 day−1) to productivity, while diatoms and dinoflagellates (2–10 and 4–13 mg C m−2 day−1, respectively) were consistently low. Prymnesiophytes, the most dynamic component (34–134 mg C m−2 day−1), co-dominated in 2017 experiments. Unexpected imbalances in grazing relative to production were observed for all picoplankton populations (Prochlorococcus, Synechococcus and heterotrophic bacteria), suggesting a trophic cascade in the absence of mesozooplankton predation on large microzooplankton. Study sites with abundant larval tuna had the shallowest deep chlorophyll maxima and significant net positive phytoplankton growth below the mixed layer.  more » « less
Award ID(s):
1851558 1851347
NSF-PAR ID:
10245782
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Plankton Research
ISSN:
0142-7873
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We investigated size-fractioned biomass, isotopes and grazing of mesozooplankton communities in the larval habitat of Atlantic bluefin tuna (ABT) in the oceanic Gulf of Mexico (GoM) during the peak spawning month of May. Euphotic-zone biomass ranged from 101 to 513 mg C m−2 during the day and 216 to 798 mg C m−2 at night. Grazing varied from 0.1 to 1.0 mg Chla m−2 d−1, averaging 1–3% of phytoplankton Chla consumed d−1. Carnivorous taxa dominated the biomass of > 1-mm zooplankton (78% day; 60% night), while only 13% of smaller zooplankton were carnivores. δ15N enrichment between small and large sizes indicates a 0.5–0.6 trophic-step difference. Although characteristics of GoM zooplankton are generally similar to those of remote oligotrophic subtropical regions, zooplankton stocks in the ABT larval habitat are disproportionately high relative to primary production, compared with HOT and BATS averages. Growth-grazing balances for phytoplankton were resolved with a statistically insignificant residual, and trophic fluxes from local productivity were sufficient to satisfy C demand of suspension feeding mesozooplankton. While carnivore C demand was met by local processes in the central GoM, experiments closer to the coastal margin suggest the need for a lateral subsidy of zooplankton biomass to the oceanic region. 
    more » « less
  2. Abstract

    Western Atlantic bluefin tuna (ABT) undertake long-distance migrations from rich feeding grounds in the North Atlantic to spawn in oligotrophic waters of the Gulf of Mexico (GoM). Stock recruitment is strongly affected by interannual variability in the physical features associated with ABT larvae, but the nutrient sources and food-web structure of preferred habitat, the edges of anticyclonic loop eddies, are unknown. Here, we describe the goals, physical context, design and major findings of an end-to-end process study conducted during peak ABT spawning in May 2017 and 2018. Mesoscale features in the oceanic GoM were surveyed for larvae, and five multi-day Lagrangian experiments measured hydrography and nutrients; plankton biomass and composition from bacteria to zooplankton and fish larvae; phytoplankton nutrient uptake, productivity and taxon-specific growth rates; micro- and mesozooplankton grazing; particle export; and ABT larval feeding and growth rates. We provide a general introduction to the BLOOFINZ-GoM project (Bluefin tuna Larvae in Oligotrophic Ocean Foodwebs, Investigation of Nitrogen to Zooplankton) and highlight the finding, based on backtracking of experimental waters to their positions weeks earlier, that lateral transport from the continental slope region may be more of a key determinant of available habitat utilized by larvae than eddy edges per se.

     
    more » « less
  3. Abstract The highly stratified, oligotrophic regions of the oceans are predominantly nitrogen limited in the surface ocean and light limited at the deep chlorophyll maximum (DCM). Hence, determining light and nitrogen co-limitation patterns for diverse phytoplankton taxa is crucial to understanding marine primary production throughout the euphotic zone. During two cruises in the deep-water Gulf of Mexico, we measured primary productivity (H13CO3−), nitrate uptake (15NO3−) and ammonium uptake (15NH4+) throughout the water column. Primary productivity declined with depth from the mixed layer to the DCM, averaging 27.1 mmol C m−2 d−1. The fraction of growth supported by NO3− was consistently low, with upper euphotic zone values ranging from 0.01 to 0.14 and lower euphotic zone values ranging from 0.03 to 0.44. Nitrate uptake showed strong diel patterns (maximum during the day), whereas ammonium uptake exhibited no diel variability. To parameterize taxon-specific phytoplankton nutrient and light utilization, we used a data assimilation approach (Bayesian Markov Chain Monte Carlo) including primary productivity, nutrient uptake and taxon-specific growth rate measurements. Parameters derived from this analysis define distinct niches for five phytoplankton taxa (Prochlorococcus, Synechococcus, diatoms, dinoflagellates and prymnesiophytes) and may be useful for constraining biogeochemical models of oligotrophic open-ocean systems. 
    more » « less
  4. Campbell, Lisa (Ed.)
    Abstract Biomass and composition of the phytoplankton community were investigated in the deep-water Gulf of Mexico (GoM) at the edges of Loop Current anticyclonic eddies during May 2017 and May 2018. Using flow cytometry, high-performance liquid chromatography pigments and microscopy, we found euphotic zone integrated chlorophyll a of ~10 mg m−2 and autotrophic carbon ranging from 463 to 1268 mg m−2, dominated by picoplankton (<2 μm cells). Phytoplankton assemblages were similar to the mean composition at the Bermuda Atlantic Time-series Study site, but differed from the Hawaii Ocean Times-series site. GoM phytoplankton biomass was ~2-fold higher at the deep chlorophyll maximum (DCM) relative to the mixed layer (ML). Prochlorococcus and prymnesiophytes were the dominant taxa throughout the euphotic zone; however, other eukaryotic taxa had significant biomass in the DCM. Shallower DCMs were correlated with more prymnesiophytes and prasinophytes (Type 3) and reduced Prochlorococcus. These trends in ML and DCM taxonomic composition likely reflect relative nutrient supply—with ML populations relying on remineralized ammonium as a nitrogen source, and the taxonomically diverse DCM populations using more nitrate. These spatially separated phytoplankton communities represent different pathways for primary production, with a dominance of picoplankton in the ML and more nano- and microplankton at the DCM. 
    more » « less
  5. Johnson, Karyn N. (Ed.)
    ABSTRACT Coral reefs are possible sinks for microbes; however, the removal mechanisms at play are not well understood. Here, we characterize pelagic microbial groups at the CARMABI reef (Curaçao) and examine microbial consumption by three coral species: Madracis mirabilis , Porites astreoides , and Stephanocoenia intersepta . Flow cytometry analyses of water samples collected from a depth of 10 m identified 6 microbial groups: Prochlorococcus , three groups of Synechococcus , photosynthetic eukaryotes, and heterotrophic bacteria. Minimum growth rates (μ) for Prochlorococcus , all Synechococcus groups, and photosynthetic eukaryotes were 0.55, 0.29, and 0.45 μ day −1 , respectively, and suggest relatively high rates of productivity despite low nutrient conditions on the reef. During a series of 5-h incubations with reef corals performed just after sunset or prior to sunrise, reductions in the abundance of photosynthetic picoeukaryotes, Prochlorococcus and Synechococcus cells, were observed. Of the three Synechococcus groups, one decreased significantly during incubations with each coral and the other two only with M. mirabilis. Removal of carbon from the water column is based on coral consumption rates of phytoplankton and averaged between 138 ng h −1 and 387 ng h −1 , depending on the coral species. A lack of coral-dependent reduction in heterotrophic bacteria, differences in Synechococcus reductions, and diurnal variation in reductions of Synechococcus and Prochlorococcus , coinciding with peak cell division, point to selective feeding by corals. Our study indicates that bentho-pelagic coupling via selective grazing of microbial groups influences carbon flow and supports heterogeneity of microbial communities overlying coral reefs. IMPORTANCE We identify interactions between coral grazing behavior and the growth rates and cell abundances of pelagic microbial groups found surrounding a Caribbean reef. During incubation experiments with three reef corals, reductions in microbial cell abundance differed according to coral species and suggest specific coral or microbial mechanisms are at play. Peaks in removal rates of Prochlorococcus and Synechococcus cyanobacteria appear highest during postsunset incubations and coincide with microbial cell division. Grazing rates and effort vary across coral species and picoplankton groups, possibly influencing overall microbial composition and abundance over coral reefs. For reef corals, use of such a numerically abundant source of nutrition may be advantageous, especially under environmentally stressful conditions when symbioses with dinoflagellate algae break down. 
    more » « less