skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: All 17 S‐locus F‐box proteins of the S 2 ‐ and S 3 ‐haplotypes of Petunia inflata are assembled into similar SCF complexes with a specific function in self‐incompatibility
Summary

The collaborative non‐self‐recognition model for S‐RNase‐based self‐incompatibility predicts that multiple S‐locus F‐box proteins (SLFs) produced by pollen of a givenS‐haplotype collectively mediate ubiquitination and degradation of all non‐self S‐RNases, but not self S‐RNases, in the pollen tube, thereby resulting in cross‐compatible pollination but self‐incompatible pollination. We had previously used pollen extracts containingGFP‐fused S2SLF1 (SLF1 with anS2‐haplotype) ofPetunia inflatafor co‐immunoprecipitation (Co‐IP) and mass spectrometry (MS), and identified PiCUL1‐P (a pollen‐specific Cullin1), PiSSK1 (a pollen‐specific Skp1‐like protein) and PiRBX1 (a conventional Rbx1) as components of theSCFS2–SLF1complex. Using pollen extracts containing PiSSK1:FLAG:GFPfor Co‐IP/MS, we identified two additionalSLFs (SLF4 andSLF13) that were assembled intoSCFSLFcomplexes. As 17SLFgenes (SLF1toSLF17) have been identified inS2andS3pollen, here we examined whether all 17SLFs are assembled into similar complexes and, if so, whether these complexes are unique toSLFs. We modified the previous Co‐IP/MSprocedure, including the addition of style extracts from four differentS‐genotypes to pollen extracts containing PiSSK1:FLAG:GFP, to perform four separate experiments. The results taken together show that all 17SLFs and anSLF‐like protein,SLFLike1 (encoded by anS‐locus‐linked gene), co‐immunoprecipitated with PiSSK1:FLAG:GFP. Moreover, of the 179 other F‐box proteins predicted byS2andS3pollen transcriptomes, only a pair with 94.9% identity and another pair with 99.7% identity co‐immunoprecipitated with PiSSK1:FLAG:GFP. These results suggest thatSCFSLFcomplexes have evolved specifically to function in self‐incompatibility.

 
more » « less
NSF-PAR ID:
10246763
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
87
Issue:
6
ISSN:
0960-7412
Page Range / eLocation ID:
p. 606-616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self‐incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related toSIin the Solanaceae. For example, the pistilSIproteins S‐RNase andHTprotein function in a pistil‐sideIRBthat causes rejection of pollen from self‐compatible (SC) red/orange‐fruited species in the tomato clade. However, S‐RNase‐independentIRBs also clearly contribute to rejecting pollen from these species. We investigated S‐RNase‐independent rejection ofSolanum lycopersicumpollen bySCSolanum pennelliiLA0716,SC.Solanum habrochaitesLA0407, andSCSolanum arcanumLA2157, which lack functional S‐RNase expression. We found that all three accessions expressHTproteins, which previously had been known to function only in conjunction with S‐RNase, and then usedRNAi to test whether they also function in S‐RNase‐independent pollen rejection. SuppressingHTexpression inSCS. pennelliiLA0716 allowsS. lycopersicumpollen tubes to penetrate farther into the pistil inHTsuppressed plants, but not to reach the ovary. In contrast, suppressingHTexpression inSC.Solanum habrochaitesLA0407 and inSCS. arcanumLA2157 allowsS. lycopersicumpollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus,HTproteins are implicated in both S‐RNase‐dependent and S‐RNase‐independent pollen rejection. The results support the view that overall compatibility results from multiple pollen–pistil interactions with additive effects.

     
    more » « less
  2. Summary

    We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth inArabidopsis thaliana(Col‐0).

    Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteinsAtSLAH3,AtALMT12,AtTMEM16 andAtCCCas the putative anion transporters responsible for these currents.

    AtCCCGFPwas observed at the shank andAtSLAH3‐GFPat the tip and shank of thePTplasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPTs with an anion vibrating probe were significantly lower inslah3−/−andccc−/−mutants, but unaffected inalmt12−/−andtmem16−/−. We further characterised the effect ofpHandGABAby patch clamp. Strong regulation by extracellularpHwas observed in the wild‐type, but not intmem16−/−. Our results are compatible withAtTMEM16 functioning as an anion/H+cotransporter and therefore, as a putativepHsensor.GABApresence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12−/−and (2) reduced the current inAtALMT12 transfectedCOS‐7 cells, strongly suggesting the direct interaction ofGABAwithAtALMT12.

    Our data show thatAtSLAH3 andAtCCCactivity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPTgrowth modulation bypH,GABA, and [Ca2+]cytthrough anionic transporters.

     
    more » « less
  3. Summary

    The mitochondrial and chloroplastmRNAs of the majority of land plants are modified through cytidine to uridine (C‐to‐U)RNAediting. Previously, forward and reverse genetic screens demonstrated a requirement for pentatricopeptide repeat (PPR) proteins forRNAediting. Moreover, chloroplast editing factorsOZ1,RIP2,RIP9 andORRM1 were identified in co‐immunoprecipitation (co‐IP) experiments, albeit the minimal complex sufficient for editing activity was never deduced. The current study focuses on isolated, intact complexes that are capable of editing distinct sites. Peak editing activity for four sites was discovered in size‐exclusion chromatography (SEC) fractions ≥ 670 kDa, while fractions estimated to be approximately 413 kDa exhibited the greatest ability to convert a substrate containing the editing siterps14C80.RNAcontent peaked in the ≥ 670 kDa fraction. Treatment of active chloroplast extracts withRNase A abolished the relationship of editing activity with high‐MWfractions, suggesting a structuralRNAcomponent in native complexes. By immunoblotting,RIP9,OTP86,OZ1 andORRM1 were shown to be present in active gel filtration fractions, thoughOZ1 andORRM1 were mainly found in low‐MWinactive fractions. Active editing factor complexes were affinity‐purified using anti‐RIP9 antibodies, and orthologs to putativeArabidopsis thalianaRNAediting factorPPRproteins,RIP2,RIP9,RIP1,OZ1,ORRM1 andISE2 were identified via mass spectrometry. Western blots from co‐IP studies revealed the mutual association ofOTP86 andOZ1 with nativeRIP9 complexes. Thus,RIP9 complexes were discovered to be highly associated with C‐to‐URNAediting activity and other editing factors indicative of their critical role in vascular plant editosomes.

     
    more » « less
  4. Premise

    Herbarium specimens have been used to detect climate‐induced shifts in flowering time by using the day of year of collection (DOY) as a proxy for first or peak flowering date. Variation among herbarium sheets in their phenological status, however, undermines the assumption thatDOYaccurately represents any particular phenophase. Ignoring this variation can reduce the explanatory power of pheno‐climatic models (PCMs) designed to predict the effects of climate on flowering date.

    Methods

    Here we present a protocol for the phenological scoring of imaged herbarium specimens using an ImageJ plugin, and we introduce a quantitative metric of a specimen's phenological status, the phenological index (PI), which we use inPCMs to control for phenological variation among specimens ofStreptanthus tortuosus(Brassicaceeae) when testing for the effects of climate onDOY. We demonstrate that includingPIas an independent variable improves model fit.

    Results

    IncludingPIinPCMs increased the modelR2relative toPCMs that excludedPI; regression coefficients for climatic parameters, however, remained constant.

    Discussion

    Our protocol provides a simple, quantitative phenological metric for any observed plant. IncludingPIinPCMs increasesR2and enables predictions of theDOYof any phenophase under any specified climatic conditions.

     
    more » « less
  5. Abstract

    The distribution of the short‐lived radionuclide26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions inCO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearingCAIs in the Dominion Range (DOM) 08006 (CO3.0) andDOM08004 (CO3.1) chondrites. All minerals inDOM08006CAIs as well as hibonite, spinel, and pyroxene inDOM08004 are uniformly16O‐rich (Δ17O = −25 to −20‰) but grossite and melilite inDOM08004CAIs are not; Δ17O of grossite and melilite range from ~ −11 to ~0‰ and from ~ −23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial26Al/27Al ratios (26Al/27Al)0is seen, with four having (26Al/27Al)0≤1.1 × 10−5and six having (26Al/27Al)0≥3.7 × 10−5. Five of the26Al‐richCAIs have (26Al/27Al)0within error of 4.5 × 10−5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10−5given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the26Al‐poorCAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in theDOM08006CAIs, as well as spinel, hibonite, and Al‐diopside in theDOM08004CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where theCOgrossite‐bearingCAIs originated. Oxygen isotopic heterogeneity inCAIs fromDOM08004 resulted from exchange between the initially16O‐rich (Δ17O ~−24‰) melilite and grossite and16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on theCOchondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on theCOparent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected mostCAIs in CO ≥3.1 chondrites.

     
    more » « less